Drivers of soil fauna communities along a successional gradient in upper Andean tropical forests

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE
Camilo Castillo-Avila, Dennis Castillo-Figueroa, Juan M. Posada
{"title":"Drivers of soil fauna communities along a successional gradient in upper Andean tropical forests","authors":"Camilo Castillo-Avila, Dennis Castillo-Figueroa, Juan M. Posada","doi":"10.1016/j.soilbio.2024.109692","DOIUrl":null,"url":null,"abstract":"Soils harbor more than half of Earth's biodiversity, with soil fauna representing one of the most diverse groups. However, understanding the drivers influencing their biodiversity remains limited. Upper Andean tropical forests are among Earth's most biodiverse ecosystems, but have undergone large-scale historical transformations, resulting in landscapes with different forest successional stages. In this study, we aimed to analyze soil fauna communities along a successional gradient in Colombia's Eastern Andean forests and identify key microclimatic, soil, and forest structural drivers. We collected soil fauna from 168 samples (30x30x5 cm), in dry and wet seasons, in 14 permanent plots (20x20 m) located in four sites. Data on microclimate, nutrients, productivity, plant diversity, and litter functional richness were gathered from these permanent plots. We observed significant soil fauna biodiversity turnover among Andean montane forest sites, mirroring the distinctive floristic composition between them. We also found that soil fauna richness and abundance increased with succession, attributed to higher productivity and more suitable microclimatic conditions in old-growth forests. Our findings suggest that the primary driver of soil fauna richness in tropical mountain Andean forests is the amount of energy (i.e, forest productivity), while soil fauna abundance is mainly influenced by thermal conditions. Additionally, factors framed within the physiological tolerance hypothesis (i.e., calcium, aluminum) and within the habitat heterogeneity hypothesis (i.e., litter functional richness, plant diversity) also play a role, albeit to a lesser extent. This study emphasizes the importance of examining forest recovery including soil fauna groups to understand successional patterns in tropical mountain forests.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"12 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2024.109692","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soils harbor more than half of Earth's biodiversity, with soil fauna representing one of the most diverse groups. However, understanding the drivers influencing their biodiversity remains limited. Upper Andean tropical forests are among Earth's most biodiverse ecosystems, but have undergone large-scale historical transformations, resulting in landscapes with different forest successional stages. In this study, we aimed to analyze soil fauna communities along a successional gradient in Colombia's Eastern Andean forests and identify key microclimatic, soil, and forest structural drivers. We collected soil fauna from 168 samples (30x30x5 cm), in dry and wet seasons, in 14 permanent plots (20x20 m) located in four sites. Data on microclimate, nutrients, productivity, plant diversity, and litter functional richness were gathered from these permanent plots. We observed significant soil fauna biodiversity turnover among Andean montane forest sites, mirroring the distinctive floristic composition between them. We also found that soil fauna richness and abundance increased with succession, attributed to higher productivity and more suitable microclimatic conditions in old-growth forests. Our findings suggest that the primary driver of soil fauna richness in tropical mountain Andean forests is the amount of energy (i.e, forest productivity), while soil fauna abundance is mainly influenced by thermal conditions. Additionally, factors framed within the physiological tolerance hypothesis (i.e., calcium, aluminum) and within the habitat heterogeneity hypothesis (i.e., litter functional richness, plant diversity) also play a role, albeit to a lesser extent. This study emphasizes the importance of examining forest recovery including soil fauna groups to understand successional patterns in tropical mountain forests.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信