Spatiotemporal dynamics in a three-component predator–prey model

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Mengxin Chen, Xue-Zhi Li, Canrong Tian
{"title":"Spatiotemporal dynamics in a three-component predator–prey model","authors":"Mengxin Chen, Xue-Zhi Li, Canrong Tian","doi":"10.1016/j.aml.2024.109424","DOIUrl":null,"url":null,"abstract":"This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"92 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.
三要素捕食者-猎物模型的时空动态变化
本文探讨了具有猎物趋向性的三组分捕食者-猎物模型的时空动力学。我们主要证明了稳态分岔的存在性和分岔解。最有趣的发现是,只有排斥性掠食性才能确定系统稳态分岔的存在和空间格局的形成。在吸引型趋向性和无趋向性下,没有稳态分岔和空间格局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信