Combined effects of fluoroquinolone antibiotic enrofloxacin and rising sea temperatures on the health of the Mediterranean mussel (Mytilus galloprovincialis): exploring physiological, biochemical, and energetic balance dynamics.

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
J. Giannessi, V. Meucci, L. Intorre, A. Cuccaro, R. Freitas, L. De Marchi, G. Monni, M. Baratti, Pretti C
{"title":"Combined effects of fluoroquinolone antibiotic enrofloxacin and rising sea temperatures on the health of the Mediterranean mussel (Mytilus galloprovincialis): exploring physiological, biochemical, and energetic balance dynamics.","authors":"J. Giannessi, V. Meucci, L. Intorre, A. Cuccaro, R. Freitas, L. De Marchi, G. Monni, M. Baratti, Pretti C","doi":"10.1016/j.envpol.2024.125500","DOIUrl":null,"url":null,"abstract":"Human activity exposes organisms in marine ecosystems to numerous stressors, including rising seawater temperatures and antibiotic contamination. The present study investigated the impacts of environmentally relevant concentrations of the fluoroquinolone (FQ) antibiotic enrofloxacin (ENR), specifically 5 and 500 ng/L, in <em>Mytilus galloprovincialis</em> under ambient (20 °C) and predicted warming (25 °C) conditions after 14 days of exposure, followed by a 14-day recovery period in the absence of ENR. The chemical analyses revealed significant variability in bioaccumulation in mussel tissues. Physiological assessments showed decreased respiration and filtration rates post-exposure, with temperature-dependent recovery dynamics. Biochemical parameters indicated an increased metabolic capacity and energy reserves at higher temperatures, with a significant increase in energy expenditure. Notably, ENR induced significant DNA single-strand breaks in mussel gills and digestive glands, with temperature influencing DNA repair mechanisms. The combination of ENR and elevated temperatures exhibited additive or even synergistic effects on certain physiological and biochemical parameters, indicating a higher risk when these stressors act together. The Indipendent Action model (IA) results highlighted that the majority of observed effects in combined stressors were consistent with predicted values, with notable synergistic interactions in energy reserves and antagonistic responses in metabolic and physiological functions. These findings suggest that both stressors, acting alone and especially in combination, may pose a risk to marine bivalves such as mussels. Further research is needed to assess the impacts of FQs and ocean warming on ecosystem stability and non-target organisms.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"117 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125500","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity exposes organisms in marine ecosystems to numerous stressors, including rising seawater temperatures and antibiotic contamination. The present study investigated the impacts of environmentally relevant concentrations of the fluoroquinolone (FQ) antibiotic enrofloxacin (ENR), specifically 5 and 500 ng/L, in Mytilus galloprovincialis under ambient (20 °C) and predicted warming (25 °C) conditions after 14 days of exposure, followed by a 14-day recovery period in the absence of ENR. The chemical analyses revealed significant variability in bioaccumulation in mussel tissues. Physiological assessments showed decreased respiration and filtration rates post-exposure, with temperature-dependent recovery dynamics. Biochemical parameters indicated an increased metabolic capacity and energy reserves at higher temperatures, with a significant increase in energy expenditure. Notably, ENR induced significant DNA single-strand breaks in mussel gills and digestive glands, with temperature influencing DNA repair mechanisms. The combination of ENR and elevated temperatures exhibited additive or even synergistic effects on certain physiological and biochemical parameters, indicating a higher risk when these stressors act together. The Indipendent Action model (IA) results highlighted that the majority of observed effects in combined stressors were consistent with predicted values, with notable synergistic interactions in energy reserves and antagonistic responses in metabolic and physiological functions. These findings suggest that both stressors, acting alone and especially in combination, may pose a risk to marine bivalves such as mussels. Further research is needed to assess the impacts of FQs and ocean warming on ecosystem stability and non-target organisms.

Abstract Image

氟喹诺酮类抗生素恩诺沙星和海水温度上升对地中海贻贝(Mytilus galloprovincialis)健康的综合影响:探索生理、生化和能量平衡动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信