Assessment of a Light-Curable Hydrogel to Be Used for Root Canal Obturation

IF 5.7 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
S. Bhandari, S. Kuehne, J. Camilleri
{"title":"Assessment of a Light-Curable Hydrogel to Be Used for Root Canal Obturation","authors":"S. Bhandari, S. Kuehne, J. Camilleri","doi":"10.1177/00220345241287504","DOIUrl":null,"url":null,"abstract":"Root canal obturation involves filling of the chemomechanically prepared root canal space. Despite reduced microbial load, residual bacteria can still lead to reinfection and treatment failure. Currently, obturation techniques use a combination of gutta-percha and sealer, which requires the preparation of the root canal to specific sizes and tapers to enable the fitting of customized cones. This study aims to characterize the physical, chemical, and antimicrobial properties of a new light-curable injectable material (OdneFill, Switzerland) used to obturate the root canal. Odnefill and 2 root canal sealers (AH Plus and BioRoot RCS) were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy following exposure to chlorhexidine, sodium hypochlorite, and water. The flow, film thickness, radiopacity, solubility, and contact angle were evaluated. The susceptibility to microbial degradation was assessed by weight changes after contact with bacterial enzymes (lipase and cholesterol esterase). A multispecies biofilm composed of Streptococcus mutans, Enterococcus faecalis, Fusobacterium nucleatum, and Veillonella dispar was used to assess changes to the material microstructure (SEM). Further, bacterial viability in contact with the materials was evaluated using live/dead staining and confocal microscopy. A direct contact assay was carried out, and the utilization of the materials as a carbon source for the bacterial biofilm was also assessed. Statistical analysis was performed using 1-way analysis of variance and Tukey post hoc tests ( P = 0.05). OdneFill was composed of an organic matrix with zirconium oxide filler. It exhibited comparable physical properties to AH Plus and BioRoot RCS and was stable in contact with irrigating solutions and with the bacterial enzymes (cholesterol esterase and lipase). Its antimicrobial characteristics were better than those of AH Plus when placed in contact with a multispecies biofilm. Based on the findings, OdneFill presents itself as suitable root canal–filling material and warrants further clinical investigation.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"18 4 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241287504","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Root canal obturation involves filling of the chemomechanically prepared root canal space. Despite reduced microbial load, residual bacteria can still lead to reinfection and treatment failure. Currently, obturation techniques use a combination of gutta-percha and sealer, which requires the preparation of the root canal to specific sizes and tapers to enable the fitting of customized cones. This study aims to characterize the physical, chemical, and antimicrobial properties of a new light-curable injectable material (OdneFill, Switzerland) used to obturate the root canal. Odnefill and 2 root canal sealers (AH Plus and BioRoot RCS) were characterized by scanning electron microscopy (SEM) and energy-dispersive spectroscopy following exposure to chlorhexidine, sodium hypochlorite, and water. The flow, film thickness, radiopacity, solubility, and contact angle were evaluated. The susceptibility to microbial degradation was assessed by weight changes after contact with bacterial enzymes (lipase and cholesterol esterase). A multispecies biofilm composed of Streptococcus mutans, Enterococcus faecalis, Fusobacterium nucleatum, and Veillonella dispar was used to assess changes to the material microstructure (SEM). Further, bacterial viability in contact with the materials was evaluated using live/dead staining and confocal microscopy. A direct contact assay was carried out, and the utilization of the materials as a carbon source for the bacterial biofilm was also assessed. Statistical analysis was performed using 1-way analysis of variance and Tukey post hoc tests ( P = 0.05). OdneFill was composed of an organic matrix with zirconium oxide filler. It exhibited comparable physical properties to AH Plus and BioRoot RCS and was stable in contact with irrigating solutions and with the bacterial enzymes (cholesterol esterase and lipase). Its antimicrobial characteristics were better than those of AH Plus when placed in contact with a multispecies biofilm. Based on the findings, OdneFill presents itself as suitable root canal–filling material and warrants further clinical investigation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dental Research
Journal of Dental Research 医学-牙科与口腔外科
CiteScore
15.30
自引率
3.90%
发文量
155
审稿时长
3-8 weeks
期刊介绍: The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信