{"title":"Acceleration of self-consistent field iteration for Kohn–Sham density functional theory","authors":"Fengmin Ge, Fusheng Luo, Fei Xu","doi":"10.1016/j.aml.2024.109422","DOIUrl":null,"url":null,"abstract":"Density functional theory calculations involve complex nonlinear models that require iterative algorithms to obtain approximate solutions. The number of iterations directly affects the computational efficiency of the iterative algorithms. However, for complex molecular systems, classical self-consistent field iterations either do not converge, or converge slowly. To improve the efficiency of self-consistent field iterations, this paper proposes a novel acceleration algorithm, which utilizes some approximate solutions to fit the convergence trend of errors and then obtains a more accurate approximate solution through extrapolation. This novel algorithm differs from previous acceleration schemes in terms of both its ideology and form. Besides using the combination of the derived approximations, we also predict a more accurate solution based on the decreasing trend of error. The significant acceleration effect of the proposed algorithm is demonstrated through numerical examples.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"17 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109422","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Density functional theory calculations involve complex nonlinear models that require iterative algorithms to obtain approximate solutions. The number of iterations directly affects the computational efficiency of the iterative algorithms. However, for complex molecular systems, classical self-consistent field iterations either do not converge, or converge slowly. To improve the efficiency of self-consistent field iterations, this paper proposes a novel acceleration algorithm, which utilizes some approximate solutions to fit the convergence trend of errors and then obtains a more accurate approximate solution through extrapolation. This novel algorithm differs from previous acceleration schemes in terms of both its ideology and form. Besides using the combination of the derived approximations, we also predict a more accurate solution based on the decreasing trend of error. The significant acceleration effect of the proposed algorithm is demonstrated through numerical examples.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.