{"title":"“Intrinsic disorder-protein modification-LLPS-tumor” regulatory axis: From regulatory mechanisms to precision medicine","authors":"Zekun Cheng , Zehao Cheng , Yikai Zhang , Shubing Zhang","doi":"10.1016/j.bbcan.2024.189242","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid-Liquid Phase Separation (LLPS) is an important mechanism for the formation of functional droplets. Protein modification is an important pathway to regulate LLPS, in which series of modifying groups realize dynamic regulation by changing the charge and spatial resistance of the modified proteins. Meanwhile, uncontrolled protein modifications associated with LLPS dysregulation are highly correlated with tumorigenesis and development, suggesting the existence of a potential regulatory axis between the three. In this review, we pioneered “protein modification-LLPS-tumor” regulatory axis and summarized protein modifications that regulate LLPS in cancer cells (including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, lactate, ADP-ribosylation, O-glycosylation, and acylation) and their associated modification mechanisms. Finally, we outline advances in precision medicine based on this regulatory axis. The aim of this review is to expand the understanding of protein modifications regulating LLPS under normal or abnormal cellular conditions and to provide possible ideas for precision therapy.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 1","pages":"Article 189242"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001732","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid-Liquid Phase Separation (LLPS) is an important mechanism for the formation of functional droplets. Protein modification is an important pathway to regulate LLPS, in which series of modifying groups realize dynamic regulation by changing the charge and spatial resistance of the modified proteins. Meanwhile, uncontrolled protein modifications associated with LLPS dysregulation are highly correlated with tumorigenesis and development, suggesting the existence of a potential regulatory axis between the three. In this review, we pioneered “protein modification-LLPS-tumor” regulatory axis and summarized protein modifications that regulate LLPS in cancer cells (including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, lactate, ADP-ribosylation, O-glycosylation, and acylation) and their associated modification mechanisms. Finally, we outline advances in precision medicine based on this regulatory axis. The aim of this review is to expand the understanding of protein modifications regulating LLPS under normal or abnormal cellular conditions and to provide possible ideas for precision therapy.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.