Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Leonie Rominger, Max Hackbarth, Tobias Jung, Marvin Scherzinger, Luis F M Rosa, Harald Horn, Martin Kaltschmitt, Cristian Picioreanu, Johannes Gescher
{"title":"Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.","authors":"Leonie Rominger, Max Hackbarth, Tobias Jung, Marvin Scherzinger, Luis F M Rosa, Harald Horn, Martin Kaltschmitt, Cristian Picioreanu, Johannes Gescher","doi":"10.1016/j.tibtech.2024.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO<sub>2</sub>) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth. The study revealed that the process can be carried out with the same electron efficiency as conventional gas fermentation, but overcomes disadvantages, such as the use of explosive gas mixtures. When accounting only for the electron input via electrical energy, a solar energy demand of 67.89 kWh kg<sup>-1</sup> dry biomass was determined. While anaerobic MES is ideally suited to produce methane, short-chain alcohols, and carboxylic acids, its aerobic counterpart could extend this important range of applications to not only protein for use in the food and feed sector, but also further complex products.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.11.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO2) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth. The study revealed that the process can be carried out with the same electron efficiency as conventional gas fermentation, but overcomes disadvantages, such as the use of explosive gas mixtures. When accounting only for the electron input via electrical energy, a solar energy demand of 67.89 kWh kg-1 dry biomass was determined. While anaerobic MES is ideally suited to produce methane, short-chain alcohols, and carboxylic acids, its aerobic counterpart could extend this important range of applications to not only protein for use in the food and feed sector, but also further complex products.

利用氧生物电合成生产微生物生物质的效率和工艺开发。
自养微生物电合成(MES)过程主要基于依赖二氧化碳(CO2)作为电子受体的生物,通常生物量产量较低。然而,有关缺氧电合成(OMES)过程和效率的数据却很少。在本研究中,我们利用 Kyrpidia spormannii 裂殖气细菌研究了阴极依赖性生长的生物质形成和能效。研究发现,该过程的电子效率与传统气体发酵相同,但克服了使用爆炸性混合气体等缺点。如果只考虑通过电能输入的电子,则太阳能需求量为 67.89 千瓦时/千克干生物质。厌氧 MES 非常适合生产甲烷、短链醇和羧酸,而好氧 MES 则可以将这一重要的应用范围扩大到不仅包括用于食品和饲料行业的蛋白质,还包括更多的复杂产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信