Jiaxin Shi, Bo Peng, Ran Xu, Xiaoyan Chang, Chenghao Wang, Xiang Zhou, Linyou Zhang
{"title":"Exploration oxidative stress underlying gastroesophageal reflux disease and therapeutic targets identification: a multi-omics Mendelian randomization study.","authors":"Jiaxin Shi, Bo Peng, Ran Xu, Xiaoyan Chang, Chenghao Wang, Xiang Zhou, Linyou Zhang","doi":"10.1093/postmj/qgae182","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gastroesophageal reflux disease (GERD) is a chronic inflammatory gastrointestinal disease, which has no thoroughly effective or safe treatment. Elevated oxidative stress is a common consequence of chronic inflammatory conditions.</p><p><strong>Methods: </strong>We employed Summary-data based MR (SMR) analysis to assess the associations between gene molecular characteristics and GERD. Exposure data were the summary-level data on the levels of DNA methylation, gene expression, and protein expression, which obtained from related methylation, expression, and protein quantitative trait loci investigations (mQTL, eQTL, and pQTL). Outcome data, Genome-wide association study (GWAS) summary statistics of GERD, were extracted from the Ong's study (discovery), the Dönertaş's study (replication), and the FinnGen study (replication). Colocalization analysis was performed to determine if the detected signal pairs shared a causative genetic mutation. Oxidative stress related genes and druggable genes were imported to explore oxidative stress mechanism underlying GERD and therapeutic targets of GERD. The Drugbank database was utilized to conduct druggability evaluation.</p><p><strong>Results: </strong>After multi-omics SMR analysis and colocalization analysis, we identified seven key genes for GERD, which were SUOX and SERPING1, DUSP13, SULT1A1, LMOD1, UBE2L6, and PSCA. SUOX was screened out to be the mediator, which suggest that GERD is related to oxidative stress. SERPING1, SULT1A1, and PSCA were selected to be the druggable genes.</p><p><strong>Conclusions: </strong>These findings offered strong support for the identification of GERD treatment targets in the future as well as for the study of the oxidative stress mechanism underlying GERD.</p>","PeriodicalId":20374,"journal":{"name":"Postgraduate Medical Journal","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postgraduate Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/postmj/qgae182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Gastroesophageal reflux disease (GERD) is a chronic inflammatory gastrointestinal disease, which has no thoroughly effective or safe treatment. Elevated oxidative stress is a common consequence of chronic inflammatory conditions.
Methods: We employed Summary-data based MR (SMR) analysis to assess the associations between gene molecular characteristics and GERD. Exposure data were the summary-level data on the levels of DNA methylation, gene expression, and protein expression, which obtained from related methylation, expression, and protein quantitative trait loci investigations (mQTL, eQTL, and pQTL). Outcome data, Genome-wide association study (GWAS) summary statistics of GERD, were extracted from the Ong's study (discovery), the Dönertaş's study (replication), and the FinnGen study (replication). Colocalization analysis was performed to determine if the detected signal pairs shared a causative genetic mutation. Oxidative stress related genes and druggable genes were imported to explore oxidative stress mechanism underlying GERD and therapeutic targets of GERD. The Drugbank database was utilized to conduct druggability evaluation.
Results: After multi-omics SMR analysis and colocalization analysis, we identified seven key genes for GERD, which were SUOX and SERPING1, DUSP13, SULT1A1, LMOD1, UBE2L6, and PSCA. SUOX was screened out to be the mediator, which suggest that GERD is related to oxidative stress. SERPING1, SULT1A1, and PSCA were selected to be the druggable genes.
Conclusions: These findings offered strong support for the identification of GERD treatment targets in the future as well as for the study of the oxidative stress mechanism underlying GERD.
期刊介绍:
Postgraduate Medical Journal is a peer reviewed journal published on behalf of the Fellowship of Postgraduate Medicine. The journal aims to support junior doctors and their teachers and contribute to the continuing professional development of all doctors by publishing papers on a wide range of topics relevant to the practicing clinician and teacher. Papers published in PMJ include those that focus on core competencies; that describe current practice and new developments in all branches of medicine; that describe relevance and impact of translational research on clinical practice; that provide background relevant to examinations; and papers on medical education and medical education research. PMJ supports CPD by providing the opportunity for doctors to publish many types of articles including original clinical research; reviews; quality improvement reports; editorials, and correspondence on clinical matters.