Hybrid model development through the integration of quantitative read-across (qRA) hypothesis with the QSAR framework: An alternative risk assessment of acute inhalation toxicity testing in rats.

Sapna Kumari Pandey, Kunal Roy
{"title":"Hybrid model development through the integration of quantitative read-across (qRA) hypothesis with the QSAR framework: An alternative risk assessment of acute inhalation toxicity testing in rats.","authors":"Sapna Kumari Pandey, Kunal Roy","doi":"10.1016/j.chemosphere.2024.143931","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory authorities frequently need information on a chemical's capacity to produce acute systemic toxicity in humans. Due to concerns about animal welfare, human relevance, and reproducibility, numerous international initiatives have centered on finding a substitute for using animals in acute systemic lethality testing. These substitutes include the more current in-silico and in vitro techniques. Meanwhile, Advances in artificial intelligence and computational resources have led to a rise in the speed and accuracy of machine learning algorithms. Therefore, new approach methodologies (NAMs) based on in-silico modeling are considered a suitable place to start, even though many non-animal testing approaches exist for evaluating the safety of chemicals. Eventually, in this investigation, we have developed a hybrid computational model for acute inhalational toxicity data. In this case study, two major in silico techniques, QSAR (quantitative structure-activity relationship) and qRA (quantitative read-across) predictions, were utilized in a hybrid manner to extract more insightful information about the compounds based on similarity as well as the physicochemical properties. The findings of this investigation demonstrate that the integrated method surpasses the traditional QSAR model in terms of statistical quality for inhalational toxicity data, with greater predictability and transferability, due to a much smaller number of descriptors used in the hybrid modeling process. This hybrid modeling technique is a promising alternative, which can be paired with other methods in an integrated manner for a more rational categorization and evaluation of inhaled chemicals as a substitute for animal testing for regulatory purposes in the future.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143931"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory authorities frequently need information on a chemical's capacity to produce acute systemic toxicity in humans. Due to concerns about animal welfare, human relevance, and reproducibility, numerous international initiatives have centered on finding a substitute for using animals in acute systemic lethality testing. These substitutes include the more current in-silico and in vitro techniques. Meanwhile, Advances in artificial intelligence and computational resources have led to a rise in the speed and accuracy of machine learning algorithms. Therefore, new approach methodologies (NAMs) based on in-silico modeling are considered a suitable place to start, even though many non-animal testing approaches exist for evaluating the safety of chemicals. Eventually, in this investigation, we have developed a hybrid computational model for acute inhalational toxicity data. In this case study, two major in silico techniques, QSAR (quantitative structure-activity relationship) and qRA (quantitative read-across) predictions, were utilized in a hybrid manner to extract more insightful information about the compounds based on similarity as well as the physicochemical properties. The findings of this investigation demonstrate that the integrated method surpasses the traditional QSAR model in terms of statistical quality for inhalational toxicity data, with greater predictability and transferability, due to a much smaller number of descriptors used in the hybrid modeling process. This hybrid modeling technique is a promising alternative, which can be paired with other methods in an integrated manner for a more rational categorization and evaluation of inhaled chemicals as a substitute for animal testing for regulatory purposes in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信