{"title":"Ethylene negatively regulates cold tolerance through HbEIN3-HbICE2 regulatory module in Hevea brasiliensis.","authors":"Xue-Wei Zeng, Wei-Zeng Jiang, Jian-Long Zhang, Jia-Hui Ding, Yi-Min Qiu, Wei Wen, Huan Yang, Qian-Yu Zhang, Hong-Mei Yuan","doi":"10.1016/j.plaphy.2024.109397","DOIUrl":null,"url":null,"abstract":"<p><p>Cold stress can result in reduced growth rates, decreased latex production, and restricted areas for the Para rubber tree (Hevea brasiliensis). However, the molecular mechanisms governing the response of Hevea brasiliensis to cold stress remain elusive. Here, we found that ethylene plays a negative role in Hevea brasiliensis responses to cold stress. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) decreased the cold tolerance of Hevea brasiliensis, while exogenous treatment with Ag<sup>+</sup> (an ethylene signal inhibitor) had the opposite effect. Additionally, overexpressing HbEIN3 decreased cold stress tolerance in Arabidopsis and Taraxacum koksaghyz plants. Quantitative real-time PCR analysis indicated that HbEIN3-1 and HbEIN3-2 repress the expression of the cold-responsive genes HbCBF1-3 in Hevea brasiliensis. Moreover, HbEIN3-1 and HbEIN3-2 directly bind to the HbCBF1 promoter to suppress its transcription. Further investigation revealed that HbEIN3s interact with and dampen the transcriptional activity of HbICE2, a crucial transcription factor that positively regulates the cold signaling pathway, thereby attenuating the expression of HbICE2-targeted genes. Collectively, these findings indicate that HbEIN3s play a crucial role in ethylene-regulated cold tolerance through the repression of HbCBF1 expression and HbICE2 transcriptional activity.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109397"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109397","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cold stress can result in reduced growth rates, decreased latex production, and restricted areas for the Para rubber tree (Hevea brasiliensis). However, the molecular mechanisms governing the response of Hevea brasiliensis to cold stress remain elusive. Here, we found that ethylene plays a negative role in Hevea brasiliensis responses to cold stress. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) decreased the cold tolerance of Hevea brasiliensis, while exogenous treatment with Ag+ (an ethylene signal inhibitor) had the opposite effect. Additionally, overexpressing HbEIN3 decreased cold stress tolerance in Arabidopsis and Taraxacum koksaghyz plants. Quantitative real-time PCR analysis indicated that HbEIN3-1 and HbEIN3-2 repress the expression of the cold-responsive genes HbCBF1-3 in Hevea brasiliensis. Moreover, HbEIN3-1 and HbEIN3-2 directly bind to the HbCBF1 promoter to suppress its transcription. Further investigation revealed that HbEIN3s interact with and dampen the transcriptional activity of HbICE2, a crucial transcription factor that positively regulates the cold signaling pathway, thereby attenuating the expression of HbICE2-targeted genes. Collectively, these findings indicate that HbEIN3s play a crucial role in ethylene-regulated cold tolerance through the repression of HbCBF1 expression and HbICE2 transcriptional activity.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.