Alexandra Koch, Rüdiger Stirnberg, Santiago Estrada, Weiyi Zeng, Valerie Lohner, Mohammad Shahid, Philipp Ehses, Eberhard D Pracht, Martin Reuter, Tony Stöcker, Monique M B Breteler
{"title":"Versatile MRI acquisition and processing protocol for population-based neuroimaging.","authors":"Alexandra Koch, Rüdiger Stirnberg, Santiago Estrada, Weiyi Zeng, Valerie Lohner, Mohammad Shahid, Philipp Ehses, Eberhard D Pracht, Martin Reuter, Tony Stöcker, Monique M B Breteler","doi":"10.1038/s41596-024-01085-w","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging has an essential role in studies of brain health and of cerebrovascular and neurodegenerative diseases, requiring the availability of versatile magnetic resonance imaging (MRI) acquisition and processing protocols. We designed and developed a multipurpose high-resolution MRI protocol for large-scale and long-term population neuroimaging studies that includes structural, diffusion-weighted and functional MRI modalities. This modular protocol takes almost 1 h of scan time and is, apart from a concluding abdominal scan, entirely dedicated to the brain. The protocol links the acquisition of an extensive set of MRI contrasts directly to the corresponding fully automated data processing pipelines and to the required quality assurance of the MRI data and of the image-derived phenotypes. Since its successful implementation in the population-based Rhineland Study (ongoing, currently more than 11,000 participants, target participant number of 20,000), the proposed MRI protocol has proved suitable for epidemiological and clinical cross-sectional and longitudinal studies, including multisite studies. The approach requires expertise in magnetic resonance image acquisition, in computer science for the data management and the execution of processing pipelines, and in brain anatomy for the quality assessment of the MRI data. The protocol takes ~1 h of MRI acquisition and ~20 h of data processing to complete for a single dataset, but parallelization over multiple datasets using high-performance computing resources reduces the processing time. By making the protocol, MRI sequences and pipelines available, we aim to contribute to better comparability, interoperability and reusability of large-scale neuroimaging data.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01085-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroimaging has an essential role in studies of brain health and of cerebrovascular and neurodegenerative diseases, requiring the availability of versatile magnetic resonance imaging (MRI) acquisition and processing protocols. We designed and developed a multipurpose high-resolution MRI protocol for large-scale and long-term population neuroimaging studies that includes structural, diffusion-weighted and functional MRI modalities. This modular protocol takes almost 1 h of scan time and is, apart from a concluding abdominal scan, entirely dedicated to the brain. The protocol links the acquisition of an extensive set of MRI contrasts directly to the corresponding fully automated data processing pipelines and to the required quality assurance of the MRI data and of the image-derived phenotypes. Since its successful implementation in the population-based Rhineland Study (ongoing, currently more than 11,000 participants, target participant number of 20,000), the proposed MRI protocol has proved suitable for epidemiological and clinical cross-sectional and longitudinal studies, including multisite studies. The approach requires expertise in magnetic resonance image acquisition, in computer science for the data management and the execution of processing pipelines, and in brain anatomy for the quality assessment of the MRI data. The protocol takes ~1 h of MRI acquisition and ~20 h of data processing to complete for a single dataset, but parallelization over multiple datasets using high-performance computing resources reduces the processing time. By making the protocol, MRI sequences and pipelines available, we aim to contribute to better comparability, interoperability and reusability of large-scale neuroimaging data.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.