Enhancing the sustainability of rubber materials: Dual benefits of wet mixing technology and recycled rubber's honeycomb reinforcement structure.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Maohui Wang, Zhanfu Yong
{"title":"Enhancing the sustainability of rubber materials: Dual benefits of wet mixing technology and recycled rubber's honeycomb reinforcement structure.","authors":"Maohui Wang, Zhanfu Yong","doi":"10.1016/j.wasman.2024.12.012","DOIUrl":null,"url":null,"abstract":"<p><p>The world's three leading tire manufacturers have proposed specific timelines for using recycled materials. For instance, Michelin targets an increase in the proportion of sustainable materials in tires to 40 % by 2030 and aims to produce 100 % of its tires from bio-based, renewable, or recyclable materials as of 2050. In such a context, this study introduced wet mixing technology to apply recycled rubber (RR) in highly wear-resistant tire tread compounds. This technique leverages the rubber's inherent crosslink density to enhance the mechanical performance of final products. The results indicated that wet mixing effectively addressed the high viscosity issue of RR. In the traditional dry mixing method, physical blending typically results in large particle sizes and suboptimal performance. In contrast, wet mixing reduced the rubber's hysteresis loss by 75 % and improved its rebound performance by 35.6 % at 23 °C, 60 °C, and 100 °C compared to traditional dry mixing. DIN volume abrasion was also reduced by 23.3 %. Remarkably, Akron abrasion nearly doubled its effect. Additionally, wet mixing regulated aggregate structure and formed a densely packed honeycomb-like structure within RR. Incorporating RR using wet mixing demonstrates noticeable advantages in carbon black/natural rubber/RR composite materials. This approach also presents a viable path to sustainable development in the rubber manufacturing industry.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"190-198"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.012","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The world's three leading tire manufacturers have proposed specific timelines for using recycled materials. For instance, Michelin targets an increase in the proportion of sustainable materials in tires to 40 % by 2030 and aims to produce 100 % of its tires from bio-based, renewable, or recyclable materials as of 2050. In such a context, this study introduced wet mixing technology to apply recycled rubber (RR) in highly wear-resistant tire tread compounds. This technique leverages the rubber's inherent crosslink density to enhance the mechanical performance of final products. The results indicated that wet mixing effectively addressed the high viscosity issue of RR. In the traditional dry mixing method, physical blending typically results in large particle sizes and suboptimal performance. In contrast, wet mixing reduced the rubber's hysteresis loss by 75 % and improved its rebound performance by 35.6 % at 23 °C, 60 °C, and 100 °C compared to traditional dry mixing. DIN volume abrasion was also reduced by 23.3 %. Remarkably, Akron abrasion nearly doubled its effect. Additionally, wet mixing regulated aggregate structure and formed a densely packed honeycomb-like structure within RR. Incorporating RR using wet mixing demonstrates noticeable advantages in carbon black/natural rubber/RR composite materials. This approach also presents a viable path to sustainable development in the rubber manufacturing industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信