Sex chromosome turnovers and stability in snakes.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tomáš Pšenička, Barbora Augstenová, Daniel Frynta, Panagiotis Kornilios, Lukáš Kratochvíl, Michail Rovatsos
{"title":"Sex chromosome turnovers and stability in snakes.","authors":"Tomáš Pšenička, Barbora Augstenová, Daniel Frynta, Panagiotis Kornilios, Lukáš Kratochvíl, Michail Rovatsos","doi":"10.1093/molbev/msae255","DOIUrl":null,"url":null,"abstract":"<p><p>For a long time, snakes were presented as a textbook example of a group with gradual differentiation of homologous ZZ/ZW sex chromosomes. However, recent advances revealed that the ZZ/ZW sex chromosomes characterize only caenophidian snakes and certain species of boas and pythons have non-homologous XX/XY sex chromosomes. We used genome coverage analysis in four non-caenophidian species to identify their sex chromosomes, and we examined the homology of sex chromosomes across phylogenetically-informative snake lineages. We identified sex chromosomes for the first time in 13 species of non-caenophidian snakes, providing much deeper insights into the evolutionary history of snake sex chromosomes. The evolution of sex chromosomes in snakes is more complex than previously thought. Snakes may have had ancestral XX/XY sex chromosomes, which are still present in a blind snake and some boas, and there were several transitions to derived XX/XY sex chromosomes with different gene content and two or even three transitions to ZZ/ZW sex chromosomes. However, we discuss more alternative scenarios. In any case, we document that (1) some genomic regions were likely repeatedly co-opted as sex chromosomes in phylogenetically distant lineages, even with opposite types of heterogamety; (2) snake lineages differ greatly in the rate of differentiation of sex chromosomes; (3) snakes likely originally possessed sex chromosomes prone to turnovers. The sex chromosomes became evolutionarily highly stable once their differentiation progressed in the megadiverse caenophidian snakes. Snakes thus provide an ideal system for studying the evolutionary factors that drive unequal rates of differentiation, turnovers and stability of sex chromosomes.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae255","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For a long time, snakes were presented as a textbook example of a group with gradual differentiation of homologous ZZ/ZW sex chromosomes. However, recent advances revealed that the ZZ/ZW sex chromosomes characterize only caenophidian snakes and certain species of boas and pythons have non-homologous XX/XY sex chromosomes. We used genome coverage analysis in four non-caenophidian species to identify their sex chromosomes, and we examined the homology of sex chromosomes across phylogenetically-informative snake lineages. We identified sex chromosomes for the first time in 13 species of non-caenophidian snakes, providing much deeper insights into the evolutionary history of snake sex chromosomes. The evolution of sex chromosomes in snakes is more complex than previously thought. Snakes may have had ancestral XX/XY sex chromosomes, which are still present in a blind snake and some boas, and there were several transitions to derived XX/XY sex chromosomes with different gene content and two or even three transitions to ZZ/ZW sex chromosomes. However, we discuss more alternative scenarios. In any case, we document that (1) some genomic regions were likely repeatedly co-opted as sex chromosomes in phylogenetically distant lineages, even with opposite types of heterogamety; (2) snake lineages differ greatly in the rate of differentiation of sex chromosomes; (3) snakes likely originally possessed sex chromosomes prone to turnovers. The sex chromosomes became evolutionarily highly stable once their differentiation progressed in the megadiverse caenophidian snakes. Snakes thus provide an ideal system for studying the evolutionary factors that drive unequal rates of differentiation, turnovers and stability of sex chromosomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信