Dephosphorylation of branched-chain α-keto acid dehydrogenase E1α (BCKDHA) promotes branched-chain amino acid catabolism and renders cancer cells resistant to X-rays by mitigating DNA damage
{"title":"Dephosphorylation of branched-chain α-keto acid dehydrogenase E1α (BCKDHA) promotes branched-chain amino acid catabolism and renders cancer cells resistant to X-rays by mitigating DNA damage","authors":"Tomoki Bo , Tsukasa Osaki , Junichi Fujii","doi":"10.1016/j.bbrc.2024.151154","DOIUrl":null,"url":null,"abstract":"<div><div>Branched-chain amino acids (BCAAs) facilitate cancer cell proliferation and survival. Stresses, including X-irradiation, increase BCAA uptake. However, the role of BCAA metabolism in cancer cell survival remains unclear. Therefore, this study aimed to elucidate the role of the BCAA catabolic pathway in cancer cell survival following X-irradiation. X-irradiation dose-dependently dephosphorylated branched-chain α-keto acid dehydrogenaseE1α (BCKDHA) suggesting the activation of the BCKDH complex, which catalyzes the rate-determining step of BCAA catabolism. We considered that activation of BCKDH promoted the BCAA catabolism, which resulted in cancer cell resistance to X-irradiation. Consistent with this notion, cells with BCKDHA knockdown exhibited increased radiosensitivity, which was associated with the increase in mitotic catastrophe and residual double-strand breaks by decreasing cellular ATP levels after X-irradiation. Our results suggest that BCKDHA dephosphorylation promotes BCAA catabolism, leading to cell survival by mitigating DNA damage after X-irradiation. Thus, BCAA catabolic pathway may be a target for radiation therapy.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"Article 151154"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24016905","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Branched-chain amino acids (BCAAs) facilitate cancer cell proliferation and survival. Stresses, including X-irradiation, increase BCAA uptake. However, the role of BCAA metabolism in cancer cell survival remains unclear. Therefore, this study aimed to elucidate the role of the BCAA catabolic pathway in cancer cell survival following X-irradiation. X-irradiation dose-dependently dephosphorylated branched-chain α-keto acid dehydrogenaseE1α (BCKDHA) suggesting the activation of the BCKDH complex, which catalyzes the rate-determining step of BCAA catabolism. We considered that activation of BCKDH promoted the BCAA catabolism, which resulted in cancer cell resistance to X-irradiation. Consistent with this notion, cells with BCKDHA knockdown exhibited increased radiosensitivity, which was associated with the increase in mitotic catastrophe and residual double-strand breaks by decreasing cellular ATP levels after X-irradiation. Our results suggest that BCKDHA dephosphorylation promotes BCAA catabolism, leading to cell survival by mitigating DNA damage after X-irradiation. Thus, BCAA catabolic pathway may be a target for radiation therapy.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics