Diogo Poeta, Rafael Vilarinho, Martín López-García, Pieter A A De Beule
{"title":"Optical anapoles excited by UV-A illumination.","authors":"Diogo Poeta, Rafael Vilarinho, Martín López-García, Pieter A A De Beule","doi":"10.1364/OL.536925","DOIUrl":null,"url":null,"abstract":"<p><p>We report the excitation of optical anapole states at ultraviolet (UV) wavelengths. Numerical simulations indicate that TiO<sub>2</sub> nano-rectangles with varying length-to-width ratios can support such modes within the 350-380 nm range. We further propose a two-dimensional periodic arrangement of these nano-rectangles deposited atop a fused silica substrate. Understanding and manipulating optical anapole states in the ultraviolet spectrum is crucial for advancing next-generation photonic devices and enhancing nonlinear optical processes, such as generation of highly energetic vacuum ultraviolet light through third-harmonic generation.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7198-7201"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.536925","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the excitation of optical anapole states at ultraviolet (UV) wavelengths. Numerical simulations indicate that TiO2 nano-rectangles with varying length-to-width ratios can support such modes within the 350-380 nm range. We further propose a two-dimensional periodic arrangement of these nano-rectangles deposited atop a fused silica substrate. Understanding and manipulating optical anapole states in the ultraviolet spectrum is crucial for advancing next-generation photonic devices and enhancing nonlinear optical processes, such as generation of highly energetic vacuum ultraviolet light through third-harmonic generation.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.