A Bayesian joint model for mediation analysis with matrix-valued mediators.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae143
Zijin Liu, Zhihui Amy Liu, Ali Hosni, John Kim, Bei Jiang, Olli Saarela
{"title":"A Bayesian joint model for mediation analysis with matrix-valued mediators.","authors":"Zijin Liu, Zhihui Amy Liu, Ali Hosni, John Kim, Bei Jiang, Olli Saarela","doi":"10.1093/biomtc/ujae143","DOIUrl":null,"url":null,"abstract":"<p><p>Unscheduled treatment interruptions may lead to reduced quality of care in radiation therapy (RT). Identifying the RT prescription dose effects on the outcome of treatment interruptions, mediated through doses distributed into different organs at risk (OARs), can inform future treatment planning. The radiation exposure to OARs can be summarized by a matrix of dose-volume histograms (DVH) for each patient. Although various methods for high-dimensional mediation analysis have been proposed recently, few studies investigated how matrix-valued data can be treated as mediators. In this paper, we propose a novel Bayesian joint mediation model for high-dimensional matrix-valued mediators. In this joint model, latent features are extracted from the matrix-valued data through an adaptation of probabilistic multilinear principal components analysis (MPCA), retaining the inherent matrix structure. We derive and implement a Gibbs sampling algorithm to jointly estimate all model parameters, and introduce a Varimax rotation method to identify active indicators of mediation among the matrix-valued data. Our simulation study finds that the proposed joint model has higher efficiency in estimating causal decomposition effects compared to an alternative two-step method, and demonstrates that the mediation effects can be identified and visualized in the matrix form. We apply the method to study the effect of prescription dose on treatment interruptions in anal canal cancer patients.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae143","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Unscheduled treatment interruptions may lead to reduced quality of care in radiation therapy (RT). Identifying the RT prescription dose effects on the outcome of treatment interruptions, mediated through doses distributed into different organs at risk (OARs), can inform future treatment planning. The radiation exposure to OARs can be summarized by a matrix of dose-volume histograms (DVH) for each patient. Although various methods for high-dimensional mediation analysis have been proposed recently, few studies investigated how matrix-valued data can be treated as mediators. In this paper, we propose a novel Bayesian joint mediation model for high-dimensional matrix-valued mediators. In this joint model, latent features are extracted from the matrix-valued data through an adaptation of probabilistic multilinear principal components analysis (MPCA), retaining the inherent matrix structure. We derive and implement a Gibbs sampling algorithm to jointly estimate all model parameters, and introduce a Varimax rotation method to identify active indicators of mediation among the matrix-valued data. Our simulation study finds that the proposed joint model has higher efficiency in estimating causal decomposition effects compared to an alternative two-step method, and demonstrates that the mediation effects can be identified and visualized in the matrix form. We apply the method to study the effect of prescription dose on treatment interruptions in anal canal cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信