Screening novel antiviral compounds to treat Clostridioides difficile infections.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0309624
Brice J Stolz, Ahmed A Abouelkhair, Mohamed N Seleem
{"title":"Screening novel antiviral compounds to treat Clostridioides difficile infections.","authors":"Brice J Stolz, Ahmed A Abouelkhair, Mohamed N Seleem","doi":"10.1371/journal.pone.0309624","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system. Therefore, novel anti-C. difficile drugs are urgently needed to treat and reduce the severity and recurrence of infection. In this study, we screened a library of 618 antiviral drugs to identify a potential candidate for repurposing as novel anti-C. difficile therapeutics. Following our preliminary screening, we identified 9 novel compounds that inhibited C. difficile at a concentration of 16 μM or lower. Among these, 4 antiviral compounds demonstrated the most potent anti-C. difficile activity against a panel of 15 C. difficile isolates, with minimum inhibitory concentrations (MICs) comparable to the drug of choice, vancomycin. These include rottlerin (MIC50 = 0.25 μg/mL), α-mangostin (MIC50 = 1 μg/mL), dryocrassin ABBA (MIC50 = 1 μg/mL), and obefazimod (MIC50 = 4 μg/mL). All exhibited minimal to no activity against representative members of the human gut microbiota. Interestingly, α-mangostin, a natural xanthone derived from the mangosteen fruit, exhibited strong bactericidal action, clearing a high inoculum of C. difficile in less than an hour. All other drugs exhibited bacteriostatic activity. Given their characteristics, these compounds show great promise as novel treatments for CDI.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0309624"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0309624","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system. Therefore, novel anti-C. difficile drugs are urgently needed to treat and reduce the severity and recurrence of infection. In this study, we screened a library of 618 antiviral drugs to identify a potential candidate for repurposing as novel anti-C. difficile therapeutics. Following our preliminary screening, we identified 9 novel compounds that inhibited C. difficile at a concentration of 16 μM or lower. Among these, 4 antiviral compounds demonstrated the most potent anti-C. difficile activity against a panel of 15 C. difficile isolates, with minimum inhibitory concentrations (MICs) comparable to the drug of choice, vancomycin. These include rottlerin (MIC50 = 0.25 μg/mL), α-mangostin (MIC50 = 1 μg/mL), dryocrassin ABBA (MIC50 = 1 μg/mL), and obefazimod (MIC50 = 4 μg/mL). All exhibited minimal to no activity against representative members of the human gut microbiota. Interestingly, α-mangostin, a natural xanthone derived from the mangosteen fruit, exhibited strong bactericidal action, clearing a high inoculum of C. difficile in less than an hour. All other drugs exhibited bacteriostatic activity. Given their characteristics, these compounds show great promise as novel treatments for CDI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信