BATF2/SINHCAF regulates the quantity and function of macrophages infected with Mycobacterium Tuberculosis via regulation of TTC23 through Wnt/β-catenin pathway.
Jie Zhou, Kun-Long Xiong, Hong-Xiu Wang, Wen-Wen Sun, Hui Ke, Shao-Jun Zhang, Zheng-Wei Dong, Lin Fan
{"title":"BATF2/SINHCAF regulates the quantity and function of macrophages infected with Mycobacterium Tuberculosis via regulation of TTC23 through Wnt/β-catenin pathway.","authors":"Jie Zhou, Kun-Long Xiong, Hong-Xiu Wang, Wen-Wen Sun, Hui Ke, Shao-Jun Zhang, Zheng-Wei Dong, Lin Fan","doi":"10.1016/j.ijbiomac.2024.138639","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the pathogenic mechanism of Tuberculosis (TB) can contribute to control TB. Basic leucine zipper transcription factor ATF-like 2 (BATF2) belonging to a large family of leucine zipper transcription factors (TFs) termed bZip proteins, had been verified to have important value in the diagnosis of TB. However, its role and mechanism in TB had not been elucidated. The study aimed to explore its function and molecular mechanism in macrophages infected with Mycobacterium tuberculosis (Mtb). The results indicated that BATF2 inhibited cell proliferation, promoted inflammatory response and impaired the antibacterial and antigen-presenting capacity in macrophages for T cells through regulating its downstream gene TTC23 by interacting with SINHCAF. Above roles and regulations were dependent on β-catenin functions in macrophages infected with Mtb. Clinical samples verified that the expressions of BATF2 and TTC23 were significantly higher in the blood of patients with pulmonary TB compared with health controls. Altogether, BATF2 interacted with SINHCAF to regulate the quantity and function of macrophages during Mtb infection by targeting TTC23 through Wnt/β-catenin pathway.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138639"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138639","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the pathogenic mechanism of Tuberculosis (TB) can contribute to control TB. Basic leucine zipper transcription factor ATF-like 2 (BATF2) belonging to a large family of leucine zipper transcription factors (TFs) termed bZip proteins, had been verified to have important value in the diagnosis of TB. However, its role and mechanism in TB had not been elucidated. The study aimed to explore its function and molecular mechanism in macrophages infected with Mycobacterium tuberculosis (Mtb). The results indicated that BATF2 inhibited cell proliferation, promoted inflammatory response and impaired the antibacterial and antigen-presenting capacity in macrophages for T cells through regulating its downstream gene TTC23 by interacting with SINHCAF. Above roles and regulations were dependent on β-catenin functions in macrophages infected with Mtb. Clinical samples verified that the expressions of BATF2 and TTC23 were significantly higher in the blood of patients with pulmonary TB compared with health controls. Altogether, BATF2 interacted with SINHCAF to regulate the quantity and function of macrophages during Mtb infection by targeting TTC23 through Wnt/β-catenin pathway.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.