A biomimetic injectable chitosan/alginate hydrogel biocopmosites encapsulating selenium- folic acid nanoparticles for regeneration of spinal cord injury: An in vitro study.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mahan Farzan, Mostafa Soleimannejad, Saeedeh Shariat, Mina Heidari Sureshjani, Abolfazl Gholipour, Korosh Ashrafi Dehkordi, Seyed Mohammad Reza Alerasoul Dehkordi, Mahour Farzan
{"title":"A biomimetic injectable chitosan/alginate hydrogel biocopmosites encapsulating selenium- folic acid nanoparticles for regeneration of spinal cord injury: An in vitro study.","authors":"Mahan Farzan, Mostafa Soleimannejad, Saeedeh Shariat, Mina Heidari Sureshjani, Abolfazl Gholipour, Korosh Ashrafi Dehkordi, Seyed Mohammad Reza Alerasoul Dehkordi, Mahour Farzan","doi":"10.1016/j.ijbiomac.2024.138682","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) poses significant challenges to regenerative medicine due to its limited self-repair capabilities. In this study, we engineered a biomimetic injectable hydrogel using modified chitosan and alginate biopolymers encapsulating selenium-folic acid nanoparticles (Se-FA NPs) to facilitate SCI regeneration. The hydrogel exhibited a unique porous structure attributed to the incorporation of nanofiber fragments, enhancing its biocompatibility and bioactivity. Through a series of in vitro evaluations, including cell viability assays, proliferation studies, gene expression analysis, we assessed the hydrogel's cytocompatibility and its potential for supporting neural cell growth. Our results demonstrate the promising efficacy of the hydrogel in providing a conducive microenvironment for neural tissue regeneration. Moreover, the sustained release of Se-FA NPs from the hydrogel system offers neuroprotective, antioxidative, and anti-inflammatory benefits crucial for SCI therapy. Overall, our biomimetic hydrogel biocomposites hold great potential as a therapeutic strategy for promoting spinal cord regeneration, highlighting their significance in advancing the field of regenerative medicine.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138682"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138682","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) poses significant challenges to regenerative medicine due to its limited self-repair capabilities. In this study, we engineered a biomimetic injectable hydrogel using modified chitosan and alginate biopolymers encapsulating selenium-folic acid nanoparticles (Se-FA NPs) to facilitate SCI regeneration. The hydrogel exhibited a unique porous structure attributed to the incorporation of nanofiber fragments, enhancing its biocompatibility and bioactivity. Through a series of in vitro evaluations, including cell viability assays, proliferation studies, gene expression analysis, we assessed the hydrogel's cytocompatibility and its potential for supporting neural cell growth. Our results demonstrate the promising efficacy of the hydrogel in providing a conducive microenvironment for neural tissue regeneration. Moreover, the sustained release of Se-FA NPs from the hydrogel system offers neuroprotective, antioxidative, and anti-inflammatory benefits crucial for SCI therapy. Overall, our biomimetic hydrogel biocomposites hold great potential as a therapeutic strategy for promoting spinal cord regeneration, highlighting their significance in advancing the field of regenerative medicine.

包裹硒-叶酸纳米粒子的生物仿生注射壳聚糖/精氨酸水凝胶生物复合材料用于脊髓损伤的再生:体外研究。
脊髓损伤(SCI)由于其自身修复能力有限,对再生医学提出了重大挑战。在这项研究中,我们设计了一种仿生可注射水凝胶,使用改性壳聚糖和海藻酸盐生物聚合物包封硒叶酸纳米粒子(Se-FA NPs)来促进脊髓损伤的再生。由于纳米纤维片段的掺入,水凝胶呈现出独特的多孔结构,增强了其生物相容性和生物活性。通过一系列的体外评估,包括细胞活力测定、增殖研究、基因表达分析,我们评估了水凝胶的细胞相容性及其支持神经细胞生长的潜力。我们的研究结果表明,水凝胶在为神经组织再生提供有利的微环境方面具有良好的功效。此外,从水凝胶系统中持续释放Se-FA NPs具有神经保护、抗氧化和抗炎作用,这对脊髓损伤治疗至关重要。总之,我们的仿生水凝胶生物复合材料作为一种促进脊髓再生的治疗策略具有很大的潜力,突出了它们在推进再生医学领域的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信