Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
David Salvatierra, María Pilar González, Julián Blasco, Marcos Krull, Cristiano V M Araújo
{"title":"Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats.","authors":"David Salvatierra, María Pilar González, Julián Blasco, Marcos Krull, Cristiano V M Araújo","doi":"10.1016/j.envres.2024.120609","DOIUrl":null,"url":null,"abstract":"<p><p>Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L<sup>-1</sup> of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120609"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120609","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L-1 of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信