Cyclopiazonic acid suppresses the function of Leydig cells in prepubertal male rats by disrupting mitofusin 1-mediated mitochondrial function.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Hang Lin, Ming Su, He Zhu, Yang Yu, Jianmin Sang, Yiyan Wang, Qiqi Zhu, Yang Zhu, Xiaoheng Li, Xingwang Li, Ren-Shan Ge, Huitao Li
{"title":"Cyclopiazonic acid suppresses the function of Leydig cells in prepubertal male rats by disrupting mitofusin 1-mediated mitochondrial function.","authors":"Hang Lin, Ming Su, He Zhu, Yang Yu, Jianmin Sang, Yiyan Wang, Qiqi Zhu, Yang Zhu, Xiaoheng Li, Xingwang Li, Ren-Shan Ge, Huitao Li","doi":"10.1016/j.ecoenv.2024.117503","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigated the impact of cyclopiazonic acid (CPA), a mycotoxin, on the function of progenitor Leydig cells (PLCs) in prepubertal male rats, focusing on its potential disruption of mitochondrial integrity through mitofusin 1 (MFN1) modulation. In vivo, Sprague Dawley rats received CPA (0.2, 1, 5 mg/kg/day) via gavage from postnatal days 21-28 to evaluate PLC function and mitochondrial morphology using serum hormone levels, histology, qPCR, and Western blot analyses. In vitro, rat R2C cells were treated with CPA (0.1, 1, 10 μM) alone or in combination with 100 μM leflunomide to assess PLC development through testosterone measurements, Western blotting, flow cytometry, and Mito-Tracker Green Staining. The findings from in vivo experiments showed that CPA reduced serum testosterone and progesterone levels at 1 mg/kg/day. The qPCR and Western blotting analyses revealed significant alterations in the expression of genes and proteins pertinent to PLC function, such as Scarb1, Star, Cyp11a1, and Cyp17a1. Immunofluorescence staining further revealed a reduction in MFN1 expression following exposure to CPA. In vitro experiments corroborated these observations, demonstrating that CPA induced mitochondrial fragmentation by downregulating SIRT1, PGC1-α, MFN1, and OPA1, increase reactive oxygen species, and inhibit testosterone synthesis in R2C cells. The administration of leflunomide was shown to mitigate the detrimental effects of CPA on PLCs. In conclusion, this research sheds new light on the deleterious effects of CPA on the reproductive development of prepubertal males.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117503"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117503","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigated the impact of cyclopiazonic acid (CPA), a mycotoxin, on the function of progenitor Leydig cells (PLCs) in prepubertal male rats, focusing on its potential disruption of mitochondrial integrity through mitofusin 1 (MFN1) modulation. In vivo, Sprague Dawley rats received CPA (0.2, 1, 5 mg/kg/day) via gavage from postnatal days 21-28 to evaluate PLC function and mitochondrial morphology using serum hormone levels, histology, qPCR, and Western blot analyses. In vitro, rat R2C cells were treated with CPA (0.1, 1, 10 μM) alone or in combination with 100 μM leflunomide to assess PLC development through testosterone measurements, Western blotting, flow cytometry, and Mito-Tracker Green Staining. The findings from in vivo experiments showed that CPA reduced serum testosterone and progesterone levels at 1 mg/kg/day. The qPCR and Western blotting analyses revealed significant alterations in the expression of genes and proteins pertinent to PLC function, such as Scarb1, Star, Cyp11a1, and Cyp17a1. Immunofluorescence staining further revealed a reduction in MFN1 expression following exposure to CPA. In vitro experiments corroborated these observations, demonstrating that CPA induced mitochondrial fragmentation by downregulating SIRT1, PGC1-α, MFN1, and OPA1, increase reactive oxygen species, and inhibit testosterone synthesis in R2C cells. The administration of leflunomide was shown to mitigate the detrimental effects of CPA on PLCs. In conclusion, this research sheds new light on the deleterious effects of CPA on the reproductive development of prepubertal males.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信