Huimin Li , Xinyu Li , Qi Meng , Junlei Han , Weilong Zhao , Jun Chen , Weiguang Su , Ming Song , Chaoyang Shi , Li Wang
{"title":"Electric field-induced alignment of Ag/Au nanowires for ultrasensitive in situ detection of Interleukin-6","authors":"Huimin Li , Xinyu Li , Qi Meng , Junlei Han , Weilong Zhao , Jun Chen , Weiguang Su , Ming Song , Chaoyang Shi , Li Wang","doi":"10.1016/j.bios.2024.117033","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode. Gold nanoparticles (AuNPs) were electro-reduced around the surface of each AgNWs to solve the rapid oxidization problem of the AgNWs at very low potential (<70 mV) during the electrochemical detection. Oxidation peak current of the free-standing AgNWs/AuNPs electrode only decreased by 5% after 500 scanning cycles, while the free-standing AgNWs electrode without AuNPs decreased by 90.7% after 8 CV scanning cycles. The oxidation peak current of free-standing AgNWs/AuNPs electrode was 500 times of bare electrode. This biosensor showed a wide linear range from 0.001 ng ml<sup>−1</sup> to 100 ng ml<sup>−1</sup> and a low detection limit of 0.322 pg ml<sup>−1</sup> for IL-6. In the end, IL-6 secreted by Caco-2 cell was detected by the fabricated biosensor which integrated into the gut-on-a-chip. IL-6 secretion achieved 11.3 pg ml<sup>−1</sup> during 10-days culturing.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"Article 117033"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324010406","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-6 (IL-6) is a key parameter and critical role in cancer progression. However, for detection of IL-6 in colorectal cancer diagnosis, developing a sensitive biosensor is necessary and very important. In this paper, to enhance the sensitivity of IL-6 electrochemical biosensor, the electric field was used to orient arrangement of silver nanowires (AgNWs) to be free-standing AgNWs electrode. Gold nanoparticles (AuNPs) were electro-reduced around the surface of each AgNWs to solve the rapid oxidization problem of the AgNWs at very low potential (<70 mV) during the electrochemical detection. Oxidation peak current of the free-standing AgNWs/AuNPs electrode only decreased by 5% after 500 scanning cycles, while the free-standing AgNWs electrode without AuNPs decreased by 90.7% after 8 CV scanning cycles. The oxidation peak current of free-standing AgNWs/AuNPs electrode was 500 times of bare electrode. This biosensor showed a wide linear range from 0.001 ng ml−1 to 100 ng ml−1 and a low detection limit of 0.322 pg ml−1 for IL-6. In the end, IL-6 secreted by Caco-2 cell was detected by the fabricated biosensor which integrated into the gut-on-a-chip. IL-6 secretion achieved 11.3 pg ml−1 during 10-days culturing.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.