{"title":"In-situ Sprayed platelet-derived small extracellular vesicles for the skin flap survival by reducing PANoptosis.","authors":"Zhe Liu, De-Heng Chen, Zi-Hao Lin, Zi-Yi Wang, Hao Peng, Ruo-Tao Liu, Zhi-Chao Hu, Yao-Hua He, Xiao-Juan Wei, Chang-Qing Zhang, Yong Feng, Qian Tang, Zhen-Zhong Zhu","doi":"10.1016/j.biomaterials.2024.123001","DOIUrl":null,"url":null,"abstract":"<p><p>Necrosis at the distal end of random skin flaps remains a significant challenge, limiting the clinical application of these flaps in plastic and reconstructive surgery. Inhibiting ischemia/reperfusion (I/R) injury and promoting the formation of neovascular networks are critical preventive strategies. Platelet-derived small extracellular vesicles (PL-sEV) are nanocarriers of growth factors that provide an alternative to clinically used platelet-rich plasma and platelet lysates, offering higher growth factor concentrations and lower immunogenicity. In this study, PANoptosis, a distinct form of inflammatory cell death, was fully characterized in a random skin flap model. Subcutaneous injection of PL-sEV improved ischemic skin flap survival by enhancing blood perfusion and reducing PANoptosis levels. In vitro, PL-sEV inhibited oxygen-glucose deprivation/reoxygenation-induced dysfunction in human umbilical vein endothelial cells. Furthermore, PL-sEV was incorporated into a thermosensitive triblock hydrogel, creating a sprayable delivery system (PLEL@PL-sEV). Mechanistic analysis through RNA sequencing indicated that the protective effects of PL-sEV against PANoptosis likely resulted from its anti-inflammatory properties, particularly via suppression of the NF-κB signaling pathway. This novel hydrogel system demonstrated controlled release of PL-sEV and proved effective in improving skin flap transplantation outcomes.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"123001"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Necrosis at the distal end of random skin flaps remains a significant challenge, limiting the clinical application of these flaps in plastic and reconstructive surgery. Inhibiting ischemia/reperfusion (I/R) injury and promoting the formation of neovascular networks are critical preventive strategies. Platelet-derived small extracellular vesicles (PL-sEV) are nanocarriers of growth factors that provide an alternative to clinically used platelet-rich plasma and platelet lysates, offering higher growth factor concentrations and lower immunogenicity. In this study, PANoptosis, a distinct form of inflammatory cell death, was fully characterized in a random skin flap model. Subcutaneous injection of PL-sEV improved ischemic skin flap survival by enhancing blood perfusion and reducing PANoptosis levels. In vitro, PL-sEV inhibited oxygen-glucose deprivation/reoxygenation-induced dysfunction in human umbilical vein endothelial cells. Furthermore, PL-sEV was incorporated into a thermosensitive triblock hydrogel, creating a sprayable delivery system (PLEL@PL-sEV). Mechanistic analysis through RNA sequencing indicated that the protective effects of PL-sEV against PANoptosis likely resulted from its anti-inflammatory properties, particularly via suppression of the NF-κB signaling pathway. This novel hydrogel system demonstrated controlled release of PL-sEV and proved effective in improving skin flap transplantation outcomes.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.