{"title":"Cloud Point Extraction and Spectrophotometric Determination of Carbendazim Fungicide in Vegetable and Environmental Samples","authors":"Naruesorn Samanpong, Yuthapong Udnan, Ajchara lmkum Putkum, Wipharat Chuachuad Chaiyasith, Richmond Jerry Ampiah-Bonney","doi":"10.1134/S1061934824701260","DOIUrl":null,"url":null,"abstract":"<p>A micelle-mediated cloud point extraction for carbendazim determination in vegetable and environmental samples using UV-Vis spectrophotometry was developed. Parameters of the proposed method (i.e., pH, extraction time, concentration of surfactant, concentration of ferricyanide, concentration of ferric chloride, extraction temperature, and sample volume) were optimized by UV-Vis spectrophotometry. In this study, the developed method was based on the oxidation reaction of carbendazim by the ferric ion (Fe<sup>3+</sup>) under acidic conditions, combined with potassium ferricyanide (K<sub>3</sub>[Fe(CN)<sub>6</sub>]) to form potassium hexacyanoferrate complexes or the Turnbull’s blue product quantitatively. The final products were solubilized into surfactant micelles, and carbendazim was determined by UV-Vis spectrophotometry at 685 nm after cloud point extraction. The analytical performance of the proposed method was obtained under optimal conditions. The limits of detection and quantification were found to be 0.12 and 0.41 mg/L, respectively. Precision factors were expressed as intra-day (1.6%) and inter-day (7.2%) variations over three replications. Furthermore, the proposed method was applied to the determination of carbendazim in environmental samples such as tap water, underground water, surface water, and in vegetable samples such as garlic, shallot, dried chili, celery, and peanuts. Recovery was obtained in the range of 83–113%.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"79 12","pages":"1701 - 1709"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824701260","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A micelle-mediated cloud point extraction for carbendazim determination in vegetable and environmental samples using UV-Vis spectrophotometry was developed. Parameters of the proposed method (i.e., pH, extraction time, concentration of surfactant, concentration of ferricyanide, concentration of ferric chloride, extraction temperature, and sample volume) were optimized by UV-Vis spectrophotometry. In this study, the developed method was based on the oxidation reaction of carbendazim by the ferric ion (Fe3+) under acidic conditions, combined with potassium ferricyanide (K3[Fe(CN)6]) to form potassium hexacyanoferrate complexes or the Turnbull’s blue product quantitatively. The final products were solubilized into surfactant micelles, and carbendazim was determined by UV-Vis spectrophotometry at 685 nm after cloud point extraction. The analytical performance of the proposed method was obtained under optimal conditions. The limits of detection and quantification were found to be 0.12 and 0.41 mg/L, respectively. Precision factors were expressed as intra-day (1.6%) and inter-day (7.2%) variations over three replications. Furthermore, the proposed method was applied to the determination of carbendazim in environmental samples such as tap water, underground water, surface water, and in vegetable samples such as garlic, shallot, dried chili, celery, and peanuts. Recovery was obtained in the range of 83–113%.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.