{"title":"A Study on the Prediction of Actual Driving Fuel Consumption and Carbon Emission of N2 Class Heavy Duty Diesel Vehicles on Mountain City Road","authors":"Gangzhi Tang, Xuefei Deng, Dong Liu, Jiajun Liu","doi":"10.1007/s11270-024-07682-5","DOIUrl":null,"url":null,"abstract":"<div><p>In order to predict the fuel consumption and carbon emission of vehicle driving on mountain city road, this research constructs energy conversion, fuel consumption and carbon emission model for N2 class heavy-duty diesel vehicle. The model is constructed based on the first law of engineering thermodynamics and the driving dynamic theory. The constructed model fully considers the impact of road slope characteristics on fuel consumption of mountain city roads and requires fewer parameters. The accuracy of the model is verified by actual road driving test data. Then, the prediction model is improved by adopting actual acceleration characteristics. Next, this research discusses the effects of speed, acceleration and slope on fuel consumption and carbon emission characteristics. Result indicates that when assuming the vehicle travels at a constant speed, the errors are large between measurement value and prediction value, the average errors are approximately 13% for fuel consumption and 14% for carbon emission. After considering the acceleration factor, the accuracy of the prediction model is significantly improved. Result shows that the correlation coefficient R<sup>2</sup> between predicted value and tested value increased by 0.154 for fuel consumption and 0.183 for instantaneous work done, indicating an enhanced correlation between these values. This article constructs a vehicle fuel consumption and carbon emission model for mountain city roads. The predicted results of the model can reflect the actual fuel consumption and carbon emission levels during driving. Model developed in this paper has a typical physical meaning and can be applied to other roads and other vehicles.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07682-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In order to predict the fuel consumption and carbon emission of vehicle driving on mountain city road, this research constructs energy conversion, fuel consumption and carbon emission model for N2 class heavy-duty diesel vehicle. The model is constructed based on the first law of engineering thermodynamics and the driving dynamic theory. The constructed model fully considers the impact of road slope characteristics on fuel consumption of mountain city roads and requires fewer parameters. The accuracy of the model is verified by actual road driving test data. Then, the prediction model is improved by adopting actual acceleration characteristics. Next, this research discusses the effects of speed, acceleration and slope on fuel consumption and carbon emission characteristics. Result indicates that when assuming the vehicle travels at a constant speed, the errors are large between measurement value and prediction value, the average errors are approximately 13% for fuel consumption and 14% for carbon emission. After considering the acceleration factor, the accuracy of the prediction model is significantly improved. Result shows that the correlation coefficient R2 between predicted value and tested value increased by 0.154 for fuel consumption and 0.183 for instantaneous work done, indicating an enhanced correlation between these values. This article constructs a vehicle fuel consumption and carbon emission model for mountain city roads. The predicted results of the model can reflect the actual fuel consumption and carbon emission levels during driving. Model developed in this paper has a typical physical meaning and can be applied to other roads and other vehicles.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.