Three-loop OPE Wilson coefficients of dimension-four operators for (axial-)vector and (pseudo-)scalar current correlators

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Robin Brüser, André H. Hoang, Maximilian Stahlhofen
{"title":"Three-loop OPE Wilson coefficients of dimension-four operators for (axial-)vector and (pseudo-)scalar current correlators","authors":"Robin Brüser,&nbsp;André H. Hoang,&nbsp;Maximilian Stahlhofen","doi":"10.1007/JHEP12(2024)103","DOIUrl":null,"url":null,"abstract":"<p>We calculate the three-loop Wilson coefficients of all physically relevant dimension-four operators, i.e. <span>\\( {G}_{\\mu \\nu}^a{G}^{a,\\mu \\nu} \\)</span>, <span>\\( {m}_i{\\overline{q}}_j{q}_j \\)</span> and <span>\\( {m}_i{m}_j{m}_k^2 \\)</span>, in the short-distance expansion of the time-ordered product of a pair of gauge-singlet vector, axial-vector, scalar and pseudo-scalar currents. The results are given for a general non-Abelian gauge theory with arbitrary (compact semi-simple) gauge group and <i>n</i><sub><i>f</i></sub> light fermion flavors (quarks) in a common arbitrary representation of the gauge group, which includes QCD as a special case. In particular, we allow for arbitrary flavor contents of each of the currents. For the axial-vector current the included contributions from so-called singlet diagrams are consistent with the one-loop axial anomaly.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP12(2024)103.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP12(2024)103","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We calculate the three-loop Wilson coefficients of all physically relevant dimension-four operators, i.e. \( {G}_{\mu \nu}^a{G}^{a,\mu \nu} \), \( {m}_i{\overline{q}}_j{q}_j \) and \( {m}_i{m}_j{m}_k^2 \), in the short-distance expansion of the time-ordered product of a pair of gauge-singlet vector, axial-vector, scalar and pseudo-scalar currents. The results are given for a general non-Abelian gauge theory with arbitrary (compact semi-simple) gauge group and nf light fermion flavors (quarks) in a common arbitrary representation of the gauge group, which includes QCD as a special case. In particular, we allow for arbitrary flavor contents of each of the currents. For the axial-vector current the included contributions from so-called singlet diagrams are consistent with the one-loop axial anomaly.

轴向)矢量和(伪)标量电流相关器的四维算子的三环 OPE 威尔逊系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信