T. Lohitha, R. Priya, Somarouthu V. G. V. A. Prasad, Archana Asatkar, N. S. M. P. Latha Devi, N. R. Rajagopalan, Nellore Manoj Kumar, Helen Merina Albert
{"title":"Investigating the spectroscopic, photoluminescence, electrochemical impedance, and thermal characteristics of cerium oxide (CeO2) nanorods","authors":"T. Lohitha, R. Priya, Somarouthu V. G. V. A. Prasad, Archana Asatkar, N. S. M. P. Latha Devi, N. R. Rajagopalan, Nellore Manoj Kumar, Helen Merina Albert","doi":"10.1140/epjb/s10051-024-00842-w","DOIUrl":null,"url":null,"abstract":"<div><p>Cerium dioxide (CeO<sub>2</sub>) or Ceria nanorods were produced in the current work, using the chemical precipitation approach. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–visible, photoluminescence (PL), and electrochemical impedance spectroscopy (EIS), thermogravimetric and differential thermal analyses (TG/DTA) were used to assess the material characteristics of the produced samples. The XRD results reveal that the CeO<sub>2</sub> nanorods crystallized into the cubic fluorite crystal system. Micro-strain dislocation density, gain size and cell volume of the samples were assessed. XPS examination was performed to verify the chemical states of the constituent elements in CeO<sub>2</sub> nanorods. FTIR spectral analysis was used to investigate chemical bonds and molecular vibrations in CeO<sub>2</sub> nanorods. SEM analysis was used to observe the grain structure of CeO<sub>2</sub> nanorods. UV–visible spectroscopy determined the CeO<sub>2</sub> optical absorption characteristics, bandgap, and Urbach energy. PL study and CIE-chromaticity mapping were used to investigate the light-emitting characteristics of the CeO<sub>2</sub> nanorods. The EIS method was applied to examine the impedance nature of CeO<sub>2</sub> nanorods. TGA/DTA investigations were performed to find the thermal characteristics of CeO<sub>2</sub> nanorods. The study findings indicate the usefulness of CeO<sub>2</sub> nanorods as electrodes and optoelectronic materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 12","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00842-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Cerium dioxide (CeO2) or Ceria nanorods were produced in the current work, using the chemical precipitation approach. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV–visible, photoluminescence (PL), and electrochemical impedance spectroscopy (EIS), thermogravimetric and differential thermal analyses (TG/DTA) were used to assess the material characteristics of the produced samples. The XRD results reveal that the CeO2 nanorods crystallized into the cubic fluorite crystal system. Micro-strain dislocation density, gain size and cell volume of the samples were assessed. XPS examination was performed to verify the chemical states of the constituent elements in CeO2 nanorods. FTIR spectral analysis was used to investigate chemical bonds and molecular vibrations in CeO2 nanorods. SEM analysis was used to observe the grain structure of CeO2 nanorods. UV–visible spectroscopy determined the CeO2 optical absorption characteristics, bandgap, and Urbach energy. PL study and CIE-chromaticity mapping were used to investigate the light-emitting characteristics of the CeO2 nanorods. The EIS method was applied to examine the impedance nature of CeO2 nanorods. TGA/DTA investigations were performed to find the thermal characteristics of CeO2 nanorods. The study findings indicate the usefulness of CeO2 nanorods as electrodes and optoelectronic materials.