Hepatoprotective effects of olive leaf extract against carbon tetrachloride-induced oxidative stress: in vivo and in-silico insights into the Nrf2-NFκB pathway
Jameel Ahmed Buzdar, Qurban Ali Shah, Muzammil Zaman Khan, Azka Zaheer, Tahmina Shah, Farid Shokry Ataya, Dalia Fouad
{"title":"Hepatoprotective effects of olive leaf extract against carbon tetrachloride-induced oxidative stress: in vivo and in-silico insights into the Nrf2-NFκB pathway","authors":"Jameel Ahmed Buzdar, Qurban Ali Shah, Muzammil Zaman Khan, Azka Zaheer, Tahmina Shah, Farid Shokry Ataya, Dalia Fouad","doi":"10.1007/s10735-024-10325-y","DOIUrl":null,"url":null,"abstract":"<div><p>Olive Leaves Extract (OLE) holds therapeutic potential, traditionally used to treat hepatic ailments, though its molecular mechanisms remain unclear. This study evaluated the efficacy of ethanolic OLE against Carbon Tetrachloride (CCl<sub>4</sub>)-induced oxidative stress in a rat model. Phytochemical analysis was performed using High Performance Liquid Chromatography (HPLC). For this porous, thirty rats were divided into six groups (<i>n</i> = 5): Group 1 (negative control) received a standard diet, while Groups 2–6 were subjected to CCl<sub>4</sub>-induced toxicity. Group 2 served as the disease control, and Group 3 was treated with silymarin (100 mg/kg). Groups 4, 5, and 6 received OLE at 100 mg/kg, 200 mg/kg, and 300 mg/kg, respectively, for 21 days. OLE significantly modulated hepatic biomarkers (ALT, AST, ALP), increased Total Antioxidant Capacity (TAC), decreased Total Oxidation Capacity (TOC), and restored levels of SOD, GSH, and CAT compared to the CCl<sub>4</sub> group. Malondialdehyde (MDA) levels, elevated in the disease group, however downregulated by OLE, particularly at 300 mg/kg. Histological examination revealed normal liver integrity in the OLE-treated groups. Additionally, OLE modulated the mRNA expression of IL-1β, IL-6, TNF-α, NF-kB, Bcl2, and p-53. Apoptotic markers such as Nrf2, HO-1, Cytochrome c, caspase 3, caspase 7, and Bax were normalized with OLE treatment. The inhibition of KEAP1-NRF2 protein-protein interaction showed OLE’s superior efficacy compared to silymarin, with a better docking score. These findings suggest that OLE exerts significant hepatoprotective effects against CCl<sub>4</sub>-induced oxidative stress and inflammation via the Nrf2-NFκB pathway.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10325-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Olive Leaves Extract (OLE) holds therapeutic potential, traditionally used to treat hepatic ailments, though its molecular mechanisms remain unclear. This study evaluated the efficacy of ethanolic OLE against Carbon Tetrachloride (CCl4)-induced oxidative stress in a rat model. Phytochemical analysis was performed using High Performance Liquid Chromatography (HPLC). For this porous, thirty rats were divided into six groups (n = 5): Group 1 (negative control) received a standard diet, while Groups 2–6 were subjected to CCl4-induced toxicity. Group 2 served as the disease control, and Group 3 was treated with silymarin (100 mg/kg). Groups 4, 5, and 6 received OLE at 100 mg/kg, 200 mg/kg, and 300 mg/kg, respectively, for 21 days. OLE significantly modulated hepatic biomarkers (ALT, AST, ALP), increased Total Antioxidant Capacity (TAC), decreased Total Oxidation Capacity (TOC), and restored levels of SOD, GSH, and CAT compared to the CCl4 group. Malondialdehyde (MDA) levels, elevated in the disease group, however downregulated by OLE, particularly at 300 mg/kg. Histological examination revealed normal liver integrity in the OLE-treated groups. Additionally, OLE modulated the mRNA expression of IL-1β, IL-6, TNF-α, NF-kB, Bcl2, and p-53. Apoptotic markers such as Nrf2, HO-1, Cytochrome c, caspase 3, caspase 7, and Bax were normalized with OLE treatment. The inhibition of KEAP1-NRF2 protein-protein interaction showed OLE’s superior efficacy compared to silymarin, with a better docking score. These findings suggest that OLE exerts significant hepatoprotective effects against CCl4-induced oxidative stress and inflammation via the Nrf2-NFκB pathway.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.