Experimental investigation of thermal distribution on an airfoil wing coated with nanomaterials in a supersonic flow

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
L. Kasi, P. Thangavelu
{"title":"Experimental investigation of thermal distribution on an airfoil wing coated with nanomaterials in a supersonic flow","authors":"L. Kasi,&nbsp;P. Thangavelu","doi":"10.1134/S0869864324030193","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal instability experienced by aircraft beyond supersonic speeds poses a significant risk to structural stability, particularly due to airfoil surface delamination. Conventional methods of addressing this issue involve incorporating thermal shields and modifying the design, but these approaches require extensive redesigning and lack scalability. However, an alternative approach is to reduce surface temperature distribution and minimize surface drag through the application of nanomaterial coatings. In this study, graphene nanocoating was utilized to reduce the surface roughness of the TsAGI S-12 airfoil. The thermal characteristics of the coated airfoil were evaluated using infrared (IR) imaging. The results of wind tunnel experiments showed a remarkable 21 % reduction in surface temperature and an 18 % reduction in shock wave angle compared to the conventional airfoil. Additionally, atomic force microscopy (AFM) analysis of the coated nanomaterial surface revealed a decrease in surface roughness from 20 nm to 2 nm. The use of nanomaterial surface coatings proves to be a simple and highly effective method for reducing surface temperature and minimizing shockwaves. Moreover, it offers the advantage of high scalability, making it easily applicable in the aircraft industry. Ultimately, the application of nanomaterial coatings has the potential to revolutionize the supersonic aviation industry by enhancing stability and performance.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"563 - 582"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324030193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal instability experienced by aircraft beyond supersonic speeds poses a significant risk to structural stability, particularly due to airfoil surface delamination. Conventional methods of addressing this issue involve incorporating thermal shields and modifying the design, but these approaches require extensive redesigning and lack scalability. However, an alternative approach is to reduce surface temperature distribution and minimize surface drag through the application of nanomaterial coatings. In this study, graphene nanocoating was utilized to reduce the surface roughness of the TsAGI S-12 airfoil. The thermal characteristics of the coated airfoil were evaluated using infrared (IR) imaging. The results of wind tunnel experiments showed a remarkable 21 % reduction in surface temperature and an 18 % reduction in shock wave angle compared to the conventional airfoil. Additionally, atomic force microscopy (AFM) analysis of the coated nanomaterial surface revealed a decrease in surface roughness from 20 nm to 2 nm. The use of nanomaterial surface coatings proves to be a simple and highly effective method for reducing surface temperature and minimizing shockwaves. Moreover, it offers the advantage of high scalability, making it easily applicable in the aircraft industry. Ultimately, the application of nanomaterial coatings has the potential to revolutionize the supersonic aviation industry by enhancing stability and performance.

超声速流动中纳米涂层翼型机翼热分布的实验研究
飞机在超音速以上的热不稳定性对结构稳定性构成了重大风险,特别是由于翼型表面分层。解决这一问题的传统方法包括加入热屏蔽和修改设计,但这些方法需要大量的重新设计,并且缺乏可扩展性。然而,另一种方法是通过应用纳米材料涂层来降低表面温度分布并最小化表面阻力。在这项研究中,石墨烯纳米涂层被用来降低TsAGI S-12翼型的表面粗糙度。利用红外成像技术对涂层翼型的热特性进行了评价。风洞实验结果表明,与传统翼型相比,表面温度降低了21%,激波角降低了18%。此外,原子力显微镜(AFM)对涂层纳米材料表面的分析显示,表面粗糙度从20 nm降至2 nm。使用纳米材料表面涂层被证明是降低表面温度和减少冲击波的一种简单而有效的方法。此外,它具有高可扩展性的优势,使其易于应用于飞机工业。最终,纳米材料涂层的应用有可能通过提高稳定性和性能来彻底改变超音速航空工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信