Experimental research of Cr-Ag coatings prepared by magnetron sputtering and electroplating for ITER thermal shield

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
W. Liu, Sh. Huang, Sh. Du, C. Chen, X. Chen
{"title":"Experimental research of Cr-Ag coatings prepared by magnetron sputtering and electroplating for ITER thermal shield","authors":"W. Liu,&nbsp;Sh. Huang,&nbsp;Sh. Du,&nbsp;C. Chen,&nbsp;X. Chen","doi":"10.1134/S0869864324030223","DOIUrl":null,"url":null,"abstract":"<div><p>The Cr-Ag coating was prepared by electroplating and magnetron sputtering on 6061 aluminum alloy matrix to balance the thermal shield radiation shielding capability and the coating performance for the International Thermonuclear Experimental Reactor (ITER) project. The microstructure, adhesion, and thermal shielding properties of the coating were analyzed. The results show that the Cr-Ag magnetron sputtering coating has flat surface, and better thickness uniformity than electroplate coating. The adhesion force of the Cr-Ag magnetron sputtering coating is 1.56 times higher than that electroplating coating, which is 53 N. The emissivity test results show that the emissivity of Cr-Ag coating by magnetron sputtering method at 80 K is 0.018, much lower than the emissivity of electroplating coating and 6061 aluminum alloy matrix. Theoretical calculation of radiant heat load based on emissivity test shows that the thermal shielding effect of Cr-Ag coating on thermal shield surface by magnetron sputtering is better than that of other groups. The results are of great significance for the combination of coating properties with broader thermal shield properties.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"31 3","pages":"619 - 629"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324030223","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The Cr-Ag coating was prepared by electroplating and magnetron sputtering on 6061 aluminum alloy matrix to balance the thermal shield radiation shielding capability and the coating performance for the International Thermonuclear Experimental Reactor (ITER) project. The microstructure, adhesion, and thermal shielding properties of the coating were analyzed. The results show that the Cr-Ag magnetron sputtering coating has flat surface, and better thickness uniformity than electroplate coating. The adhesion force of the Cr-Ag magnetron sputtering coating is 1.56 times higher than that electroplating coating, which is 53 N. The emissivity test results show that the emissivity of Cr-Ag coating by magnetron sputtering method at 80 K is 0.018, much lower than the emissivity of electroplating coating and 6061 aluminum alloy matrix. Theoretical calculation of radiant heat load based on emissivity test shows that the thermal shielding effect of Cr-Ag coating on thermal shield surface by magnetron sputtering is better than that of other groups. The results are of great significance for the combination of coating properties with broader thermal shield properties.

通过磁控溅射和电镀制备用于国际热核聚变实验堆热屏蔽的铬-银涂层的实验研究
采用电镀和磁控溅射的方法在6061铝合金基体上制备了Cr-Ag涂层,以平衡热屏蔽辐射屏蔽能力和国际热核实验反应堆(ITER)项目的涂层性能。分析了涂层的显微组织、附着力和热屏蔽性能。结果表明,镀铬银磁控溅射涂层表面平整,厚度均匀性优于电镀涂层。磁控溅射制备的Cr-Ag涂层的附着力为53 n,是电镀涂层的1.56倍。发射率测试结果表明,磁控溅射制备的Cr-Ag涂层在80 K时的发射率为0.018,远低于电镀涂层和6061铝合金基体的发射率。基于发射率试验的辐射热负荷理论计算表明,磁控溅射热屏蔽表面的Cr-Ag涂层的热屏蔽效果优于其他涂层。研究结果对于将涂层性能与更广泛的热屏蔽性能相结合具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信