{"title":"Systematical Evasion From Learning-Based Microarchitectural Attack Detection Tools","authors":"Debopriya Roy Dipta;Jonathan Tan;Berk Gulmezoglu","doi":"10.1109/JETCAS.2024.3491497","DOIUrl":null,"url":null,"abstract":"Microarchitectural attacks threaten the security of individuals in a diverse set of platforms, such as personal computers, mobile phones, cloud environments, and AR/VR devices. Chip vendors are struggling to patch every hardware vulnerability in a timely manner, leaving billions of people’s private information under threat. Hence, dynamic attack detection tools which utilize hardware performance counters and machine learning (ML) models, have become popular for detecting ongoing attacks. In this study, we evaluate the robustness of various ML-based detection models with a sophisticated fuzzing framework. The framework manipulates hardware performance counters in a controlled manner using individual fuzzing blocks. Later, the framework is leveraged to modify the microarchitecture attack source code and to evade the detection tools. We evaluate our fuzzing framework with time overhead, achieved leakage rate, and the number of trials to successfully evade the detection.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"823-833"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742379/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microarchitectural attacks threaten the security of individuals in a diverse set of platforms, such as personal computers, mobile phones, cloud environments, and AR/VR devices. Chip vendors are struggling to patch every hardware vulnerability in a timely manner, leaving billions of people’s private information under threat. Hence, dynamic attack detection tools which utilize hardware performance counters and machine learning (ML) models, have become popular for detecting ongoing attacks. In this study, we evaluate the robustness of various ML-based detection models with a sophisticated fuzzing framework. The framework manipulates hardware performance counters in a controlled manner using individual fuzzing blocks. Later, the framework is leveraged to modify the microarchitecture attack source code and to evade the detection tools. We evaluate our fuzzing framework with time overhead, achieved leakage rate, and the number of trials to successfully evade the detection.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.