{"title":"A Multi-Modal Fusion-Based 3D Multi-Object Tracking Framework With Joint Detection","authors":"Xiyang Wang;Chunyun Fu;Jiawei He;Mingguang Huang;Ting Meng;Siyu Zhang;Hangning Zhou;Ziyao Xu;Chi Zhang","doi":"10.1109/LRA.2024.3511438","DOIUrl":null,"url":null,"abstract":"In the classical tracking-by-detection (TBD) paradigm, detection and tracking are separately and sequentially conducted, and data association must be properly performed to achieve satisfactory tracking performance. In this letter, a new multi-object tracking framework is proposed, which integrates object detection and multi-object tracking into a single model. The proposed tracking framework eliminates the complex data association process in the classical TBD paradigm, and requires no additional training. Secondly, the regression confidence of historical trajectories is investigated, and the possible states of a trajectory (weak object or strong object) in the current frame are predicted. Then, a confidence fusion module is designed to guide non-maximum suppression for trajectories and detections to achieve ordered and robust tracking. Thirdly, by integrating historical trajectory features, the regression performance of the detector is enhanced, which better reflects the occlusion and disappearance patterns of objects in real world. Lastly, extensive experiments are conducted on the commonly used KITTI and Waymo datasets. The results show that the proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector, and it is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"532-539"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777493/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the classical tracking-by-detection (TBD) paradigm, detection and tracking are separately and sequentially conducted, and data association must be properly performed to achieve satisfactory tracking performance. In this letter, a new multi-object tracking framework is proposed, which integrates object detection and multi-object tracking into a single model. The proposed tracking framework eliminates the complex data association process in the classical TBD paradigm, and requires no additional training. Secondly, the regression confidence of historical trajectories is investigated, and the possible states of a trajectory (weak object or strong object) in the current frame are predicted. Then, a confidence fusion module is designed to guide non-maximum suppression for trajectories and detections to achieve ordered and robust tracking. Thirdly, by integrating historical trajectory features, the regression performance of the detector is enhanced, which better reflects the occlusion and disappearance patterns of objects in real world. Lastly, extensive experiments are conducted on the commonly used KITTI and Waymo datasets. The results show that the proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector, and it is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.