Decision Guided Robust DL Classification of Adversarial Images Combining Weaker Defenses

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shubhajit Datta;Manaar Alam;Arijit Mondal;Debdeep Mukhopadhyay;Partha Pratim Chakrabarti
{"title":"Decision Guided Robust DL Classification of Adversarial Images Combining Weaker Defenses","authors":"Shubhajit Datta;Manaar Alam;Arijit Mondal;Debdeep Mukhopadhyay;Partha Pratim Chakrabarti","doi":"10.1109/JETCAS.2024.3497295","DOIUrl":null,"url":null,"abstract":"Adversarial examples make Deep Learning (DL) models vulnerable to safe deployment in practical systems. Although several techniques have been proposed in the literature, defending against adversarial attacks is still challenging. The current work identifies weaknesses of traditional strategies in detecting and classifying adversarial examples. To overcome these limitations, we carefully analyze techniques like binary detector and ensemble method, and compose them in a manner which mitigates the limitations. We also effectively develop a re-attack strategy, a randomization technique called RRP (Random Resizing and Patch-removing), and a rule-based decision method. Our proposed method, BEARR (Binary detector with Ensemble and re-Attacking scheme including Randomization and Rule-based decision technique) detects adversarial examples as well as classifies those examples with a higher accuracy compared to contemporary methods. We evaluate BEARR on standard image classification datasets: CIFAR-10, CIFAR-100, and tiny-imagenet as well as two real-world datasets: plantvillage and chest X-ray in the presence of state-of-the-art adversarial attack techniques. We have also validated BEARR against a more potent attacker who has perfect knowledge of the protection mechanism. We observe that BEARR is significantly better than existing methods in the context of detection and classification accuracy of adversarial examples.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"758-772"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752684/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Adversarial examples make Deep Learning (DL) models vulnerable to safe deployment in practical systems. Although several techniques have been proposed in the literature, defending against adversarial attacks is still challenging. The current work identifies weaknesses of traditional strategies in detecting and classifying adversarial examples. To overcome these limitations, we carefully analyze techniques like binary detector and ensemble method, and compose them in a manner which mitigates the limitations. We also effectively develop a re-attack strategy, a randomization technique called RRP (Random Resizing and Patch-removing), and a rule-based decision method. Our proposed method, BEARR (Binary detector with Ensemble and re-Attacking scheme including Randomization and Rule-based decision technique) detects adversarial examples as well as classifies those examples with a higher accuracy compared to contemporary methods. We evaluate BEARR on standard image classification datasets: CIFAR-10, CIFAR-100, and tiny-imagenet as well as two real-world datasets: plantvillage and chest X-ray in the presence of state-of-the-art adversarial attack techniques. We have also validated BEARR against a more potent attacker who has perfect knowledge of the protection mechanism. We observe that BEARR is significantly better than existing methods in the context of detection and classification accuracy of adversarial examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信