Diffense: Defense Against Backdoor Attacks on Deep Neural Networks With Latent Diffusion

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bowen Hu;Chip-Hong Chang
{"title":"Diffense: Defense Against Backdoor Attacks on Deep Neural Networks With Latent Diffusion","authors":"Bowen Hu;Chip-Hong Chang","doi":"10.1109/JETCAS.2024.3469377","DOIUrl":null,"url":null,"abstract":"As deep neural network (DNN) models are used in a wide variety of applications, their security has attracted considerable attention. Among the known security vulnerabilities, backdoor attacks have become the most notorious threat to users of pre-trained DNNs and machine learning services. Such attacks manipulate the training data or training process in such a way that the trained model produces a false output to an input that carries a specific trigger, but behaves normally otherwise. In this work, we propose Diffense, a method for detecting such malicious inputs based on the distribution of the latent feature maps to clean input samples of the possibly infected target DNN. By learning the feature map distribution using the diffusion model and sampling from the model under the guidance of the data to be inspected, backdoor attack data can be detected by its distance from the sampled result. Diffense does not require knowledge about the structure, weights, and training data of the target DNN model, nor does it need to be aware of the backdoor attack method. Diffense is non-intrusive. The accuracy of the target model to clean inputs will not be affected by Diffense and the inference service can be run uninterruptedly with Diffense. Extensive experiments were conducted on DNNs trained for MNIST, CIFRA-10, GSTRB, ImageNet-10, LSUN Object and LSUN Scene applications to show that the attack success rates of diverse backdoor attacks, including BadNets, IDBA, WaNet, ISSBA and HTBA, can be significantly suppressed by Diffense. The results generally exceed the performances of existing backdoor mitigation methods, including those that require model modifications or prerequisite knowledge of model weights or attack samples.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"729-742"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10697229/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As deep neural network (DNN) models are used in a wide variety of applications, their security has attracted considerable attention. Among the known security vulnerabilities, backdoor attacks have become the most notorious threat to users of pre-trained DNNs and machine learning services. Such attacks manipulate the training data or training process in such a way that the trained model produces a false output to an input that carries a specific trigger, but behaves normally otherwise. In this work, we propose Diffense, a method for detecting such malicious inputs based on the distribution of the latent feature maps to clean input samples of the possibly infected target DNN. By learning the feature map distribution using the diffusion model and sampling from the model under the guidance of the data to be inspected, backdoor attack data can be detected by its distance from the sampled result. Diffense does not require knowledge about the structure, weights, and training data of the target DNN model, nor does it need to be aware of the backdoor attack method. Diffense is non-intrusive. The accuracy of the target model to clean inputs will not be affected by Diffense and the inference service can be run uninterruptedly with Diffense. Extensive experiments were conducted on DNNs trained for MNIST, CIFRA-10, GSTRB, ImageNet-10, LSUN Object and LSUN Scene applications to show that the attack success rates of diverse backdoor attacks, including BadNets, IDBA, WaNet, ISSBA and HTBA, can be significantly suppressed by Diffense. The results generally exceed the performances of existing backdoor mitigation methods, including those that require model modifications or prerequisite knowledge of model weights or attack samples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信