{"title":"Stealing the Invisible: Unveiling Pre-Trained CNN Models Through Adversarial Examples and Timing Side-Channels","authors":"Shubhi Shukla;Manaar Alam;Pabitra Mitra;Debdeep Mukhopadhyay","doi":"10.1109/JETCAS.2024.3485133","DOIUrl":null,"url":null,"abstract":"Machine learning, with its myriad applications, has become an integral component of numerous AI systems. A common practice in this domain is the use of transfer learning, where a pre-trained model’s architecture, readily available to the public, is fine-tuned to suit specific tasks. As Machine Learning as a Service (MLaaS) platforms increasingly use pre-trained models in their backends, it is crucial to safeguard these architectures and understand their vulnerabilities. In this work, we present \n<monospace>ArchWhisperer</monospace>\n, a model fingerprinting attack approach based on the novel observation that the classification patterns of adversarial images can be used as a means to steal the models. Furthermore, the adversarial image classifications in conjunction with model inference times is used to further enhance our attack in terms of attack effectiveness as well as query budget. \n<monospace>ArchWhisperer</monospace>\n is designed for typical user-level access in remote MLaaS environments and it exploits varying misclassifications of adversarial images across different models to fingerprint several renowned Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures. We utilize the profiling of remote model inference times to reduce the necessary adversarial images, subsequently decreasing the number of queries required. We have presented our results over 27 pre-trained models of different CNN and ViT architectures using CIFAR-10 dataset and demonstrate a high accuracy of 88.8% while keeping the query budget under 20. This is a marked improvement compared to state-of-the-art works.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"634-646"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731906/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning, with its myriad applications, has become an integral component of numerous AI systems. A common practice in this domain is the use of transfer learning, where a pre-trained model’s architecture, readily available to the public, is fine-tuned to suit specific tasks. As Machine Learning as a Service (MLaaS) platforms increasingly use pre-trained models in their backends, it is crucial to safeguard these architectures and understand their vulnerabilities. In this work, we present
ArchWhisperer
, a model fingerprinting attack approach based on the novel observation that the classification patterns of adversarial images can be used as a means to steal the models. Furthermore, the adversarial image classifications in conjunction with model inference times is used to further enhance our attack in terms of attack effectiveness as well as query budget.
ArchWhisperer
is designed for typical user-level access in remote MLaaS environments and it exploits varying misclassifications of adversarial images across different models to fingerprint several renowned Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures. We utilize the profiling of remote model inference times to reduce the necessary adversarial images, subsequently decreasing the number of queries required. We have presented our results over 27 pre-trained models of different CNN and ViT architectures using CIFAR-10 dataset and demonstrate a high accuracy of 88.8% while keeping the query budget under 20. This is a marked improvement compared to state-of-the-art works.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.