Equivariant IMU Preintegration With Biases: A Galilean Group Approach

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Giulio Delama;Alessandro Fornasier;Robert Mahony;Stephan Weiss
{"title":"Equivariant IMU Preintegration With Biases: A Galilean Group Approach","authors":"Giulio Delama;Alessandro Fornasier;Robert Mahony;Stephan Weiss","doi":"10.1109/LRA.2024.3511424","DOIUrl":null,"url":null,"abstract":"This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on \n<inline-formula><tex-math>${\\mathbf {Gal}(3) \\ltimes \\mathfrak {gal}(3)}$</tex-math></inline-formula>\n, the left-trivialization of the tangent group of the Galilean group \n<inline-formula><tex-math>$\\mathbf {Gal}(3)$</tex-math></inline-formula>\n. We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"724-731"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777045/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a new approach for Inertial Measurement Unit (IMU) preintegration, a fundamental building block that can be leveraged in different optimization-based Inertial Navigation System (INS) localization solutions. Inspired by recent advances in equivariant theory applied to biased INSs, we derive a discrete-time formulation of the IMU preintegration on ${\mathbf {Gal}(3) \ltimes \mathfrak {gal}(3)}$ , the left-trivialization of the tangent group of the Galilean group $\mathbf {Gal}(3)$ . We define a novel preintegration error that geometrically couples the navigation states and the bias leading to lower linearization error. Our method improves in consistency compared to existing preintegration approaches which treat IMU biases as a separate state-space. Extensive validation against state-of-the-art methods, both in simulation and with real-world IMU data, implementation in the Lie++ library, and open-source code are provided.
带偏差的等变IMU预积分:一种伽利略群方法
这封信提出了一种惯性测量单元(IMU)预集成的新方法,这是一个基本的构建块,可以用于不同的基于优化的惯性导航系统(INS)定位解决方案。受最近应用于偏置INSs的等变理论进展的启发,我们推导了在${\mathbf {Gal}(3) \l次\mathfrak {Gal}(3)}$上的IMU预积分的离散时间表达式,即Galilean群$\mathbf {Gal}(3)$的正切群的左简化化。我们定义了一种新的预积分误差,它将导航状态和偏置几何耦合,从而降低线性化误差。与将IMU偏差视为独立状态空间的现有预集成方法相比,我们的方法提高了一致性。针对最先进的方法进行了广泛的验证,包括模拟和真实世界的IMU数据,在li++库中实现,以及开源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信