Switchable surface FeII/III sites for water/sediment remediation through enhanced selective oxidation and ROS regulation: Performance, mechanism and application
{"title":"Switchable surface FeII/III sites for water/sediment remediation through enhanced selective oxidation and ROS regulation: Performance, mechanism and application","authors":"Yi Ren, Jun Li, Chao Liu, Weiming Zhang, Bo Lai","doi":"10.1016/j.jhazmat.2024.136799","DOIUrl":null,"url":null,"abstract":"Selective oxidation relying on high-valent iron-oxo species (Fe(IV/V)) is a promising way of effective organic decontamination. However, Fe(IV/V) formation and further purposeful reinforcement production are commonly insufficient and unsustainable. Herein, cerium (Ce) modification strategy was adopted for efficient micropollutants removal through boosting Fe(IV/V) generation. Kinetic rate of sulfamethoxazole (SMX) removal through peracetic acid (PAA) activation by FeCe-O-CN is 4.1-fold of that without Ce doping. Ce modification lowered energy barrier of the key reaction pathway (*OH→*O) during Fe(IV/V) formation and accelerated the exposure of the surface Fe<sup>II</sup> site for Fe(IV) production. Steady-state concentration of Fe(IV) and Fe(V) in FeCe-O-CN/PAA process is 2.5 × 10<sup>−8</sup> and 9.7 × 10<sup>−11</sup> M with its corresponding contribution to SMX removal as 64 % and 36 %. Not only intensified SMX removal, Ce modification significantly reduced the toxicity of transformation products. Furthermore, FeCe-O-CN/PAA system satisfies favorable decontaminant in long-term runs, anti-interference, and significantly alleviated bioaccumulation in plants. This study provides a new insight into the association between Ce modification and Fe(IV/V) generation in PAA activation and offered a feasible way for enhanced selective oxidation.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"16 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136799","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective oxidation relying on high-valent iron-oxo species (Fe(IV/V)) is a promising way of effective organic decontamination. However, Fe(IV/V) formation and further purposeful reinforcement production are commonly insufficient and unsustainable. Herein, cerium (Ce) modification strategy was adopted for efficient micropollutants removal through boosting Fe(IV/V) generation. Kinetic rate of sulfamethoxazole (SMX) removal through peracetic acid (PAA) activation by FeCe-O-CN is 4.1-fold of that without Ce doping. Ce modification lowered energy barrier of the key reaction pathway (*OH→*O) during Fe(IV/V) formation and accelerated the exposure of the surface FeII site for Fe(IV) production. Steady-state concentration of Fe(IV) and Fe(V) in FeCe-O-CN/PAA process is 2.5 × 10−8 and 9.7 × 10−11 M with its corresponding contribution to SMX removal as 64 % and 36 %. Not only intensified SMX removal, Ce modification significantly reduced the toxicity of transformation products. Furthermore, FeCe-O-CN/PAA system satisfies favorable decontaminant in long-term runs, anti-interference, and significantly alleviated bioaccumulation in plants. This study provides a new insight into the association between Ce modification and Fe(IV/V) generation in PAA activation and offered a feasible way for enhanced selective oxidation.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.