Larissa A. Gonçalves, Eduardo G. de Souza, Lúcia H. P. Nóbrega, Vanderlei Artur Bier, Marcio F. Maggi, Claudio L. Bazzi, Miguel Angel Uribe-Opazo
{"title":"Spatial and temporal variability of soil apparent electrical conductivity","authors":"Larissa A. Gonçalves, Eduardo G. de Souza, Lúcia H. P. Nóbrega, Vanderlei Artur Bier, Marcio F. Maggi, Claudio L. Bazzi, Miguel Angel Uribe-Opazo","doi":"10.1007/s11119-024-10209-x","DOIUrl":null,"url":null,"abstract":"<p>Spatial and temporal variability of the soil’s apparent electrical conductivity (ECa) and other soil attributes can be analyzed using specific digital platforms for precision agriculture, contributing to agricultural management decision-making. Understanding these variations enables more efficient and sustainable management practices tailored to each area’s characteristics, leading to higher crop yields and reduced environmental impacts. A critical question arises: should ECa measurement be done regularly or just once? This study aims to evaluate the spatial and temporal variability of soil’s apparent electrical conductivity to determine if a single ECa measurement can characterize spatial soil variability. The experiment was conducted in two areas under different management practices in Céu Azul, PR, Brazil. One area operates under a direct planting system, cultivating soybeans in the summer and rotating with wheat or corn during the winter. The second area is used as pasture during the winter and planted with corn or soybeans in the summer. ECa data from 2013 to 2016, along with chemical and physical soil attributes from 2013, were retrieved from our laboratory database. Additionally, ECa data were collected on 19/05/2022, 18/10/2022, and 10/03/2023. All ECa measurements were performed using an EM38-MK2 conductivity meter in horizontal dipolar and drag mode. ECa normalization methods such as range, average, and standard score were employed to mitigate temporal influences partially. Data was processed using the AgDataBox web platform, which included data cleaning, data interpolation, creation of thematic maps, delineation of management zones, and spatial correlation matrix procedures. Thematic maps revealed that ECa spatial variability exhibited a stable pattern. Both areas showed significant cross-correlation among topography and most soil chemical and physical attributes. The study concluded that ECa measurement could be performed once as a co-variable for interpolating other variables since the ECa pattern remained stable in both areas. The average method was the most effective normalization method in both areas. Furthermore, management zones (MZs) were delineated using equivalent normalized ECa (ECa_Eq) (mS/m) with the three data normalization methods. The agreement between MZs was sufficient to conclude that the influence of the normalization methods can be ignored.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"10 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10209-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial and temporal variability of the soil’s apparent electrical conductivity (ECa) and other soil attributes can be analyzed using specific digital platforms for precision agriculture, contributing to agricultural management decision-making. Understanding these variations enables more efficient and sustainable management practices tailored to each area’s characteristics, leading to higher crop yields and reduced environmental impacts. A critical question arises: should ECa measurement be done regularly or just once? This study aims to evaluate the spatial and temporal variability of soil’s apparent electrical conductivity to determine if a single ECa measurement can characterize spatial soil variability. The experiment was conducted in two areas under different management practices in Céu Azul, PR, Brazil. One area operates under a direct planting system, cultivating soybeans in the summer and rotating with wheat or corn during the winter. The second area is used as pasture during the winter and planted with corn or soybeans in the summer. ECa data from 2013 to 2016, along with chemical and physical soil attributes from 2013, were retrieved from our laboratory database. Additionally, ECa data were collected on 19/05/2022, 18/10/2022, and 10/03/2023. All ECa measurements were performed using an EM38-MK2 conductivity meter in horizontal dipolar and drag mode. ECa normalization methods such as range, average, and standard score were employed to mitigate temporal influences partially. Data was processed using the AgDataBox web platform, which included data cleaning, data interpolation, creation of thematic maps, delineation of management zones, and spatial correlation matrix procedures. Thematic maps revealed that ECa spatial variability exhibited a stable pattern. Both areas showed significant cross-correlation among topography and most soil chemical and physical attributes. The study concluded that ECa measurement could be performed once as a co-variable for interpolating other variables since the ECa pattern remained stable in both areas. The average method was the most effective normalization method in both areas. Furthermore, management zones (MZs) were delineated using equivalent normalized ECa (ECa_Eq) (mS/m) with the three data normalization methods. The agreement between MZs was sufficient to conclude that the influence of the normalization methods can be ignored.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.