The Shape of the Heliosphere Derived from the IBEX Ribbon

Shuai Zhang, Kaijun Liu, Quanqi Shi, Anmin Tian and Fei Yao
{"title":"The Shape of the Heliosphere Derived from the IBEX Ribbon","authors":"Shuai Zhang, Kaijun Liu, Quanqi Shi, Anmin Tian and Fei Yao","doi":"10.3847/2041-8213/ad992a","DOIUrl":null,"url":null,"abstract":"The shape of the heliosphere remains largely uncertain due to the lack of in situ measurements. However, the energetic neutral atom (ENA) ribbon structure discovered by the Interstellar Boundary EXplorer (IBEX) satellite provides a new perspective. The present study reveals that the IBEX ribbon ENA flux, observed over a full solar cycle, correlates well with the solar wind ion flux measured at 1 au after a time delay of a few years. The time lag between the two can be used to estimate the heliopause distance and the heliosphere shape. The results show that the heliopause distance is shortest slightly south of the nose direction (∼100 au) and remains almost constant with the ecliptic longitude. However, the distance extends to ∼800 au toward the polar region, and it seems that there is no broadly symmetrical and elongated single heliospheric tail. While these features are consistent with the “croissant-like” model (no tail, but with two jet-like tail lobes) of the heliosphere, they cannot fully exclude the traditional “comet-like” model with a strong local interstellar medium magnetic field. Additional data and modeling are needed to ascertain the precise shape of the heliosphere.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad992a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shape of the heliosphere remains largely uncertain due to the lack of in situ measurements. However, the energetic neutral atom (ENA) ribbon structure discovered by the Interstellar Boundary EXplorer (IBEX) satellite provides a new perspective. The present study reveals that the IBEX ribbon ENA flux, observed over a full solar cycle, correlates well with the solar wind ion flux measured at 1 au after a time delay of a few years. The time lag between the two can be used to estimate the heliopause distance and the heliosphere shape. The results show that the heliopause distance is shortest slightly south of the nose direction (∼100 au) and remains almost constant with the ecliptic longitude. However, the distance extends to ∼800 au toward the polar region, and it seems that there is no broadly symmetrical and elongated single heliospheric tail. While these features are consistent with the “croissant-like” model (no tail, but with two jet-like tail lobes) of the heliosphere, they cannot fully exclude the traditional “comet-like” model with a strong local interstellar medium magnetic field. Additional data and modeling are needed to ascertain the precise shape of the heliosphere.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信