{"title":"CsIREH1 phosphorylation regulates DELLA protein affecting plant height in cucumber (Cucumis sativus)","authors":"Hongjiao Zhao, Piaoyun Sun, Can Tong, Xiangbao Li, Tongwen Yang, Yanxin Jiang, Bosi Zhao, Junyang Dong, Biao Jiang, Junjun Shen, Zheng Li","doi":"10.1111/nph.20309","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.</li>\n<li>In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, <i>CsIREH1</i> (<i>INCOMPLETE ROOT HAIR ELONGATION 1</i>), which encodes an AGC protein kinase.</li>\n<li>Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth.</li>\n<li>Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"63 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20309","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant height is a critical agronomic trait that affects crop yield, plant architecture, and environmental adaptability. Gibberellins (GAs) regulate plant height, with DELLA proteins acting as key repressors in the GA signaling pathway by inhibiting GA-induced growth. While DELLA phosphorylation is essential for regulating plant height, the precise mechanisms underlying this process remain incompletely understood.
In this study, we identified a cucumber mutant with delayed growth, which exhibited reduced sensitivity to GA treatment. Through bulked segregant analysis (BSA-seq) combined with molecular marker linkage analysis, we successfully identified and cloned the gene responsible for the dwarf phenotype, CsIREH1 (INCOMPLETE ROOT HAIR ELONGATION 1), which encodes an AGC protein kinase.
Further research revealed that CsIREH1 interacts with and phosphorylates DELLA proteins, specifically targeting CsGAIP and CsGAI2. We propose that IREH1-dependent phosphorylation of DELLA proteins prevents their excessive accumulation, thereby maintaining normal plant growth.
Therefore, investigating the role of IREH1-mediated DELLA phosphorylation provides valuable insights and theoretical foundations for understanding how plants regulate growth mechanisms.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.