Enhancing Longevity and Mechanisms of Controlled-Release Fertilizers Through High Cross-Link Density Hyperbranched Bio-Based Polyurethane Coatings

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Boning Su, Mingchuan Yang, Bin Gao, Xiangjie Zhao, Ziyao Li, Shugang Zhang, Dongdong Cheng, Tianlin Shen, Yuanyuan Yao, Yuechao Yang
{"title":"Enhancing Longevity and Mechanisms of Controlled-Release Fertilizers Through High Cross-Link Density Hyperbranched Bio-Based Polyurethane Coatings","authors":"Boning Su, Mingchuan Yang, Bin Gao, Xiangjie Zhao, Ziyao Li, Shugang Zhang, Dongdong Cheng, Tianlin Shen, Yuanyuan Yao, Yuechao Yang","doi":"10.1021/acssuschemeng.4c08547","DOIUrl":null,"url":null,"abstract":"The maturation of biobased polymer synthesis process has led to the rapid adoption of biobased controlled-release fertilizers (BCRFs). Despite this progress, the loose structure, low cross-linking density, and poor water repellency of current biobased coatings result in short controlled-release periods, which do not meet the long-term nutrient demands of crops throughout their reproductive phases. Moreover, existing modifications to address these issues often involve the addition of external additives, which can increase biotoxicity and cost. In this study, castor oil-based hyperbranched polyol (COHBPs) was synthesized from castor oil (CO) using a “one-pot method.” We report the development of high cross-linking density biobased hyperbranched polyurethane (COHBPPFs) as a coating for BCRFs. Gel content and SEM analysis demonstrated that COHBPPFs exhibited a high degree of cross-linking. Mechanical testing using an electronic universal testing machine, along with AFM results, highlighted the superior mechanical properties of COHBPPFs compared to traditional coatings. COHBPPFs significantly enhanced controlled release performance, with a 3% coating content providing nearly 50 days of controlled release, a marked improvement over conventional coatings. The controlled release mechanism of COHBPPFs was elucidated by modeling the cross-linking process of COHBPs with PAPI. This study offers a comprehensive examination of CRF coatings from multiple perspectives and provides valuable insights into the development of high cross-link density, environmentally friendly, and renewable biobased CRFs.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"5 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The maturation of biobased polymer synthesis process has led to the rapid adoption of biobased controlled-release fertilizers (BCRFs). Despite this progress, the loose structure, low cross-linking density, and poor water repellency of current biobased coatings result in short controlled-release periods, which do not meet the long-term nutrient demands of crops throughout their reproductive phases. Moreover, existing modifications to address these issues often involve the addition of external additives, which can increase biotoxicity and cost. In this study, castor oil-based hyperbranched polyol (COHBPs) was synthesized from castor oil (CO) using a “one-pot method.” We report the development of high cross-linking density biobased hyperbranched polyurethane (COHBPPFs) as a coating for BCRFs. Gel content and SEM analysis demonstrated that COHBPPFs exhibited a high degree of cross-linking. Mechanical testing using an electronic universal testing machine, along with AFM results, highlighted the superior mechanical properties of COHBPPFs compared to traditional coatings. COHBPPFs significantly enhanced controlled release performance, with a 3% coating content providing nearly 50 days of controlled release, a marked improvement over conventional coatings. The controlled release mechanism of COHBPPFs was elucidated by modeling the cross-linking process of COHBPs with PAPI. This study offers a comprehensive examination of CRF coatings from multiple perspectives and provides valuable insights into the development of high cross-link density, environmentally friendly, and renewable biobased CRFs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信