Shear-banding dynamic and self-repair mechanism of CuZr metallic glass subjected to cyclic nanoindentation: Experiment and molecular dynamic simulation
Chi Wang, Jiaxin Yu, Jianping Lai, Bing Wang, Fan Zhao, Zhenghao Jiang, Zhengbing Xiao
{"title":"Shear-banding dynamic and self-repair mechanism of CuZr metallic glass subjected to cyclic nanoindentation: Experiment and molecular dynamic simulation","authors":"Chi Wang, Jiaxin Yu, Jianping Lai, Bing Wang, Fan Zhao, Zhenghao Jiang, Zhengbing Xiao","doi":"10.1016/j.apsusc.2024.162105","DOIUrl":null,"url":null,"abstract":"Although metallic glasses (MGs) exhibit exceptional mechanical properties, their practical applications are often hindered by operational conditions that induce cyclic stress and strain fluctuations, leading to sudden failure through rapid shear-banding. Combining experimental tests and molecular dynamic (MD) simulations, we find that although cyclic stress induces the accumulation of shear instability and promotes shear bands (SBs) growth, a unique ‘self-repair’ process occurs inside mature SBs evidenced by an obvious decrease in potential energy and increase in stabilized cluster connections. The unique self-repair behavior is elaborated by coupling the STZ-vortex model and medium-range order (MRO) clusters defined by the gradient atom stacking structure, which suggests that rigid solid-like clusters acting as the rotation center activate the inelastic deformation within surrounding atoms. Such shear-banding dynamic reveals that the self-repair event is caused by the transition from liquid-like atoms to opposite solid-like counterparts, which correlates strongly with enhancing face-sharing connections of MRO. These findings advance our understanding of structural evolution and plastic events during cyclic deformation of MGs.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"38 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162105","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although metallic glasses (MGs) exhibit exceptional mechanical properties, their practical applications are often hindered by operational conditions that induce cyclic stress and strain fluctuations, leading to sudden failure through rapid shear-banding. Combining experimental tests and molecular dynamic (MD) simulations, we find that although cyclic stress induces the accumulation of shear instability and promotes shear bands (SBs) growth, a unique ‘self-repair’ process occurs inside mature SBs evidenced by an obvious decrease in potential energy and increase in stabilized cluster connections. The unique self-repair behavior is elaborated by coupling the STZ-vortex model and medium-range order (MRO) clusters defined by the gradient atom stacking structure, which suggests that rigid solid-like clusters acting as the rotation center activate the inelastic deformation within surrounding atoms. Such shear-banding dynamic reveals that the self-repair event is caused by the transition from liquid-like atoms to opposite solid-like counterparts, which correlates strongly with enhancing face-sharing connections of MRO. These findings advance our understanding of structural evolution and plastic events during cyclic deformation of MGs.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.