Fabrication of copper-based two-tiered surface microstructures by picosecond laser micromachining in combination with electrodeposition for enhanced two-phase heat transfer

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ziqing Ouyang, Yongkang Yan, Yiqiang Long, Bingjun Luo, Zhengliang Su, Jiangyou Long
{"title":"Fabrication of copper-based two-tiered surface microstructures by picosecond laser micromachining in combination with electrodeposition for enhanced two-phase heat transfer","authors":"Ziqing Ouyang, Yongkang Yan, Yiqiang Long, Bingjun Luo, Zhengliang Su, Jiangyou Long","doi":"10.1016/j.apsusc.2024.162096","DOIUrl":null,"url":null,"abstract":"Multiscale copper-based surface microstructures are required in miniaturized two-phase heat exchange devices. In this study, we propose a method that combines picosecond laser micromachining and electrodeposition to prepare copper-based two-tiered surface microstructures. The surface structures consist of periodic mini-grooves covered by dense microcones. The mini-grooves, prepared using ultrafast laser micromachining, offer a superior capillary transport performance. On the other hand, the microcone structures, prepared by electrodeposition, provide more effective nucleation sites for liquid–vapor phase changes. Compared to single-tiered mini-groove structures, the minigroove-microcone composite structures demonstrate an 8.2% increase in critical heat flux (CHF) and a 21–58% increase in heat transfer coefficient (HTC) during capillary-fed boiling tests. The method presented in this study introduces a new approach for fabricating high-performance wick structures suitable for ultrathin two-phase heat exchange devices.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"86 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162096","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale copper-based surface microstructures are required in miniaturized two-phase heat exchange devices. In this study, we propose a method that combines picosecond laser micromachining and electrodeposition to prepare copper-based two-tiered surface microstructures. The surface structures consist of periodic mini-grooves covered by dense microcones. The mini-grooves, prepared using ultrafast laser micromachining, offer a superior capillary transport performance. On the other hand, the microcone structures, prepared by electrodeposition, provide more effective nucleation sites for liquid–vapor phase changes. Compared to single-tiered mini-groove structures, the minigroove-microcone composite structures demonstrate an 8.2% increase in critical heat flux (CHF) and a 21–58% increase in heat transfer coefficient (HTC) during capillary-fed boiling tests. The method presented in this study introduces a new approach for fabricating high-performance wick structures suitable for ultrathin two-phase heat exchange devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信