Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments

Fatma Gomaa, Daniel R Rogers, Daniel R Utter, Christopher Powers, I-ting Huang, David J Beaudoin, Ying Zhang, Colleen Cavanaugh, Virginia P Edgcomb, Joan M Bernhard
{"title":"Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments","authors":"Fatma Gomaa, Daniel R Rogers, Daniel R Utter, Christopher Powers, I-ting Huang, David J Beaudoin, Ying Zhang, Colleen Cavanaugh, Virginia P Edgcomb, Joan M Bernhard","doi":"10.1093/ismejo/wrae248","DOIUrl":null,"url":null,"abstract":"Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host’s independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host’s independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
有孔虫类原生动物的一系列代谢途径支持黑暗、富欣海底沉积物中的化学自养作用
对厌氧原生生物新陈代谢能力的研究有助于我们了解真核生物在地球上的进化过程,也有助于发现类似的地外复杂微生物生命。某些种类的有孔虫原生生物生活的环境与真核生物进化时的早期地球环境类似,包括硫酸、缺氧和缺氧沉积物孔隙水。已知有孔虫能形成共生体,也能容纳其他真核生物的细胞器(叶绿体),这可能会增强宿主对氧气的独立性。有孔虫的全部生理能力尚未完全清楚。迄今为止,有孔虫厌氧性的证据都是在标本脱离原位条件后首先受到压力时收集到的。在此,我们报告了对原位保存在无氧(缺氧和硫酸)深海海底的底栖有孔虫种群进行的全面基因表达分析,从而避免了与样本回收相关的环境改变,包括压力降低、阳光照射、升温和充氧。我们利用元转录组学、元基因组组装基因组和底物吸收测量来研究栖息在加利福尼亚外海圣巴巴拉盆地硫氧化细菌垫中的有孔虫Nonionella stella。我们的研究表明,N. stella 在黑暗无氧状态下产生能量的方式与众不同,因为它通过卡尔文循环协调了产生 ATP 和碳固定的复杂代谢途径。这些途径包括延长的糖酵解、厌氧发酵、硫化物氧化,以及膜结合无机焦磷酸酶的存在,这种酶能水解无机焦磷酸,以积极泵送质子穿过线粒体膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信