Telomere-to-telomere, gap-free genome of mung bean (Vigna radiata) provides insights into domestication under structural variation

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Kai-Hua Jia, Guan Li, Longxin Wang, Min Liu, Zhi-Wei Wang, Ru-Zhi Li, Lei-Lei Li, Kun Xie, Yong-Yi Yang, Ru-Mei Tian, Xue Chen, Yu-Jun Si, Xiao-Yan Zhang, Feng-Jing Song, Lianzheng Li, Na-Na Li
{"title":"Telomere-to-telomere, gap-free genome of mung bean (Vigna radiata) provides insights into domestication under structural variation","authors":"Kai-Hua Jia, Guan Li, Longxin Wang, Min Liu, Zhi-Wei Wang, Ru-Zhi Li, Lei-Lei Li, Kun Xie, Yong-Yi Yang, Ru-Mei Tian, Xue Chen, Yu-Jun Si, Xiao-Yan Zhang, Feng-Jing Song, Lianzheng Li, Na-Na Li","doi":"10.1093/hr/uhae337","DOIUrl":null,"url":null,"abstract":"Mung bean (Vigna radiata), an essential annual legume, holds substantial value in global agriculture due to its short growth cycle, low input requirements, and nutritional benefits. Despite extensive domestication, the genetic mechanisms underlying its morphological and physiological evolution remain incompletely understood. In this study, we present a gap-free, telomere-to-telomere genome assembly of the mung bean cultivar 'Weilv-9', achieved through the integration of PacBio HiFi, Oxford Nanopore, and Hi-C sequencing technologies. The 500 Mb assembly, encompassing 11 chromosomes and containing 28,740 protein-coding genes, reveals that 49.17% of the genome comprises repetitive sequences. Within the genome, we found the recent amplification of transposable elements significantly impacts the expression of nearby genes. Furthermore, integrating structural variation and SNP data from resequencing, we identified that the fatty acid synthesis, suberin biosynthetic, and phenylpropanoid metabolic processes have undergone strong selection during domestication. These findings provide valuable insights into the genetic mechanisms driving domestication and offer a foundation for future genetic enhancement and breeding programs in mung beans and related species.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"45 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae337","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Mung bean (Vigna radiata), an essential annual legume, holds substantial value in global agriculture due to its short growth cycle, low input requirements, and nutritional benefits. Despite extensive domestication, the genetic mechanisms underlying its morphological and physiological evolution remain incompletely understood. In this study, we present a gap-free, telomere-to-telomere genome assembly of the mung bean cultivar 'Weilv-9', achieved through the integration of PacBio HiFi, Oxford Nanopore, and Hi-C sequencing technologies. The 500 Mb assembly, encompassing 11 chromosomes and containing 28,740 protein-coding genes, reveals that 49.17% of the genome comprises repetitive sequences. Within the genome, we found the recent amplification of transposable elements significantly impacts the expression of nearby genes. Furthermore, integrating structural variation and SNP data from resequencing, we identified that the fatty acid synthesis, suberin biosynthetic, and phenylpropanoid metabolic processes have undergone strong selection during domestication. These findings provide valuable insights into the genetic mechanisms driving domestication and offer a foundation for future genetic enhancement and breeding programs in mung beans and related species.
绿豆(Vigna radiata)是一种重要的一年生豆科植物,由于其生长周期短、投入要求低和营养价值高,在全球农业中具有重要价值。尽管绿豆已被广泛驯化,但人们对其形态和生理进化的遗传机制仍然知之甚少。在本研究中,我们通过整合 PacBio HiFi、Oxford Nanopore 和 Hi-C 测序技术,对绿豆栽培品种 "Weilv-9 "进行了无间隙、端粒到端粒的基因组组装。这个 500 Mb 的基因组包含 11 条染色体和 28,740 个蛋白编码基因,其中 49.17% 的基因组由重复序列组成。在基因组内,我们发现最近的转座元件扩增对附近基因的表达产生了显著影响。此外,综合结构变异和重测序的 SNP 数据,我们发现脂肪酸合成、单宁生物合成和苯丙类代谢过程在驯化过程中经历了强烈的选择。这些发现为了解驱动驯化的遗传机制提供了宝贵的见解,并为绿豆及相关物种未来的遗传改良和育种计划奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信