Fundamentals and applications of the skyrmion Hall effect

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Sheng Yang, Yuelei Zhao, Xichao Zhang, Xiangjun Xing, Haifeng Du, Xiaoguang Li, Masahito Mochizuki, Xiaohong Xu, Johan Åkerman, Yan Zhou
{"title":"Fundamentals and applications of the skyrmion Hall effect","authors":"Sheng Yang, Yuelei Zhao, Xichao Zhang, Xiangjun Xing, Haifeng Du, Xiaoguang Li, Masahito Mochizuki, Xiaohong Xu, Johan Åkerman, Yan Zhou","doi":"10.1063/5.0218280","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmions are promising for future spintronic devices due to their nanoscale size, high thermal stability, and mobility at low current densities. However, their practical applications may be limited by the skyrmion Hall effect (SkHE), which causes skyrmions to deflect from the direction of the driving current. The SkHE usually results in annihilation of skyrmions due to the destructive skyrmion–boundary interactions. In this review, we provide a comprehensive overview of the fundamentals of the SkHE as well as the recent advances in manipulation and suppression of the SkHE in various types of magnetic materials. Additionally, we introduce some SkHE-free topological spin textures, such as skyrmioniums and hopfions. This review covers the following aspects: origin of the SkHE and its implications on spintronics, manipulation of the SkHE by external magnetic fields and geometrical engineering, and properties of SkHE-free spin textures. The review concludes by highlighting future research directions and challenges, suggesting that magnetic skyrmions and related topological spin textures will be essential for upcoming electronic and spintronic applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"29 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0218280","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions are promising for future spintronic devices due to their nanoscale size, high thermal stability, and mobility at low current densities. However, their practical applications may be limited by the skyrmion Hall effect (SkHE), which causes skyrmions to deflect from the direction of the driving current. The SkHE usually results in annihilation of skyrmions due to the destructive skyrmion–boundary interactions. In this review, we provide a comprehensive overview of the fundamentals of the SkHE as well as the recent advances in manipulation and suppression of the SkHE in various types of magnetic materials. Additionally, we introduce some SkHE-free topological spin textures, such as skyrmioniums and hopfions. This review covers the following aspects: origin of the SkHE and its implications on spintronics, manipulation of the SkHE by external magnetic fields and geometrical engineering, and properties of SkHE-free spin textures. The review concludes by highlighting future research directions and challenges, suggesting that magnetic skyrmions and related topological spin textures will be essential for upcoming electronic and spintronic applications.
斯基米恩霍尔效应的基本原理和应用
由于其纳米级尺寸、高热稳定性和低电流密度下的迁移率,磁性skyrmions在未来的自旋电子器件中很有希望。然而,它们的实际应用可能会受到skyrmion霍尔效应(SkHE)的限制,该效应会导致skyrmion偏离驱动电流的方向。由于具有破坏性的边界相互作用,SkHE通常会导致skyrmicons湮灭。在这篇综述中,我们全面概述了SkHE的基本原理,以及在各种磁性材料中操纵和抑制SkHE的最新进展。此外,我们还引入了一些无skhe的拓扑自旋织构,如skyrmionium和hopons。本文综述了SkHE的起源及其对自旋电子学的启示,外加磁场和几何工程对SkHE的操纵,以及无SkHE自旋织构的性质。文章最后指出了未来的研究方向和挑战,认为磁性自旋粒子及其相关的拓扑自旋织构在未来的电子和自旋电子应用中是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信