The immune defense response and immune-related genes expression in Odontobutis potamophila infected by Aeromonas salmonicida.

Xinhai Zhu, Qi Dong, Xiaoyu Cai, Jia Yin, Yan Liu, Xiaojian Gao, Qun Jiang, Guoxing Liu, Xiaojun Zhang
{"title":"The immune defense response and immune-related genes expression in Odontobutis potamophila infected by Aeromonas salmonicida.","authors":"Xinhai Zhu, Qi Dong, Xiaoyu Cai, Jia Yin, Yan Liu, Xiaojian Gao, Qun Jiang, Guoxing Liu, Xiaojun Zhang","doi":"10.1016/j.cbd.2024.101397","DOIUrl":null,"url":null,"abstract":"<p><p>Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila. Transcriptomic model of A. salmonicida-infected O. potamophila was analyzed to reveal immune response. A total of 113,282 unigenes were obtained and annotated in six databases. After 12 h of infection with A. salmonicides, a total of 614 differentially expressed genes (DEGs) (355 up-regulated genes and 259 down-regulated genes) were identified in the head kidney tissues. Following 24 h of infection, a total of 1689 DEGs were detected in the head kidney tissues, including 313 up-regulated genes and 1376 down-regulated genes. GO and KEGG pathway analyses were conducted to provide functional insights and a clearer understanding of the signal transduction pathways associated with the DEGs. Further analysis of the complement and coagulation cascades pathway and PPAR signaling pathway exhibited that the expression of immune genes was widely activated at the beginning of A. salmonicides infection. Additionally, six DEGs were randomly selected and validated using quantitative real-time PCR, showing expression patterns consistent with the high-throughput sequencing data. These results offer important insights that enhance the understanding of immune response in O. potamophila against A. salmonicida infection.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101397"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila. Transcriptomic model of A. salmonicida-infected O. potamophila was analyzed to reveal immune response. A total of 113,282 unigenes were obtained and annotated in six databases. After 12 h of infection with A. salmonicides, a total of 614 differentially expressed genes (DEGs) (355 up-regulated genes and 259 down-regulated genes) were identified in the head kidney tissues. Following 24 h of infection, a total of 1689 DEGs were detected in the head kidney tissues, including 313 up-regulated genes and 1376 down-regulated genes. GO and KEGG pathway analyses were conducted to provide functional insights and a clearer understanding of the signal transduction pathways associated with the DEGs. Further analysis of the complement and coagulation cascades pathway and PPAR signaling pathway exhibited that the expression of immune genes was widely activated at the beginning of A. salmonicides infection. Additionally, six DEGs were randomly selected and validated using quantitative real-time PCR, showing expression patterns consistent with the high-throughput sequencing data. These results offer important insights that enhance the understanding of immune response in O. potamophila against A. salmonicida infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信