Spectrofluorimetric Determination of 7-Aminoclonazepam, a Major Clonazepam Metabolite, in Human Urine: A Factorial Design of Experiment Approach to Optimize Method Development
Maram H. Abduljabbar, Yusuf S. Althobaiti, Reem M. Alnemari, Majed A. Algarni, Ahmed K. Bamaga, Adnan Alharbi, Ahmed Serag, Atiah H. Almalki
{"title":"Spectrofluorimetric Determination of 7-Aminoclonazepam, a Major Clonazepam Metabolite, in Human Urine: A Factorial Design of Experiment Approach to Optimize Method Development","authors":"Maram H. Abduljabbar, Yusuf S. Althobaiti, Reem M. Alnemari, Majed A. Algarni, Ahmed K. Bamaga, Adnan Alharbi, Ahmed Serag, Atiah H. Almalki","doi":"10.1002/bio.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Clonazepam, a high-potency benzodiazepine widely prescribed for seizure and panic disorders, carries a risk of abuse and dependency. This study developed a sensitive and selective spectrofluorimetric method for determining 7-aminoclonazepam, the major metabolite of clonazepam, in human urine. A 2<sup>6-2</sup> factorial design was employed to screen the optimal conditions for derivatization with NBD-Cl as the fluorescent label, considering factors such as pH, reagent volumes, temperature, and reaction time. A significant model was attained (<i>p</i> < 0.0001) revealing alkaline pH (9), elevated temperature (80°C), and high reagent concentrations as crucial for maximizing fluorescence intensity. The method demonstrated excellent linearity from 10 to 500 ng/mL (<i>R</i><sup>2</sup> = 0.9997), with limits of detection and quantitation of 3.3 and 10 ng/mL, respectively. Intra- and inter-day precision (% RSD) were less than 4%, and recoveries ranged from 97.59% to 106.12%. The method also showed no significant interference from endogenous compounds, pharmaceutical excipients, or the parent drug. Applicability of the method was validated in human subjects receiving clonazepam therapy; 7-aminoclonazepam was first detected after 12 h, peaked at 24 h (54.61 ± 9.870 ng/mL), and remained detectable up to 72 h post-dose, offering a simple, cost-effective spectrofluorimetric method for monitoring clonazepam metabolism in clinical and forensic settings.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70049","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clonazepam, a high-potency benzodiazepine widely prescribed for seizure and panic disorders, carries a risk of abuse and dependency. This study developed a sensitive and selective spectrofluorimetric method for determining 7-aminoclonazepam, the major metabolite of clonazepam, in human urine. A 26-2 factorial design was employed to screen the optimal conditions for derivatization with NBD-Cl as the fluorescent label, considering factors such as pH, reagent volumes, temperature, and reaction time. A significant model was attained (p < 0.0001) revealing alkaline pH (9), elevated temperature (80°C), and high reagent concentrations as crucial for maximizing fluorescence intensity. The method demonstrated excellent linearity from 10 to 500 ng/mL (R2 = 0.9997), with limits of detection and quantitation of 3.3 and 10 ng/mL, respectively. Intra- and inter-day precision (% RSD) were less than 4%, and recoveries ranged from 97.59% to 106.12%. The method also showed no significant interference from endogenous compounds, pharmaceutical excipients, or the parent drug. Applicability of the method was validated in human subjects receiving clonazepam therapy; 7-aminoclonazepam was first detected after 12 h, peaked at 24 h (54.61 ± 9.870 ng/mL), and remained detectable up to 72 h post-dose, offering a simple, cost-effective spectrofluorimetric method for monitoring clonazepam metabolism in clinical and forensic settings.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.