Weijie Huang 黄伟杰, Haojie Chen 陈豪杰, Zhenzhao Liu 刘桢钊, Xinyi Dong 董心怡, Guozheng Feng 冯国政, Guangfang Liu 刘广芳, Aocai Yang 杨奡偲, Zhanjun Zhang 张占军, Amir Shmuel, Li Su 苏里, Guolin Ma 马国林, Ni Shu 舒妮
{"title":"Individual Variability in the Structural Connectivity Architecture of the Human Brain.","authors":"Weijie Huang 黄伟杰, Haojie Chen 陈豪杰, Zhenzhao Liu 刘桢钊, Xinyi Dong 董心怡, Guozheng Feng 冯国政, Guangfang Liu 刘广芳, Aocai Yang 杨奡偲, Zhanjun Zhang 张占军, Amir Shmuel, Li Su 苏里, Guolin Ma 马国林, Ni Shu 舒妮","doi":"10.1523/JNEUROSCI.2139-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain exhibits a high degree of individual variability in both its structure and function, which underlies intersubject differences in cognition and behavior. It was previously shown that functional connectivity is more variable in the heteromodal association cortex but less variable in the unimodal cortices. Structural connectivity (SC) is the anatomical substrate of functional connectivity, but the spatial and temporal patterns of individual variability in SC (IVSC) remain largely unknown. In the present study, we discovered a detailed and robust chart of IVSC obtained by applying diffusion MRI and tractography techniques to 1,724 adults (770 males and 954 females) from multiple imaging datasets. Our results showed that the SC exhibited the highest and lowest variability in the limbic regions and the unimodal sensorimotor regions, respectively. With increased age, higher IVSC was observed across most brain regions. Moreover, the specific spatial distribution of IVSC is related to the cortical laminar differentiation and myelination content. Finally, we proposed a modified ridge regression model to predict individual cognition and generated idiographic brain mapping, which was significantly correlated with the spatial pattern of IVSC. Overall, our findings further contribute to the understanding of the mechanisms of individual variability in brain SC and link to the prediction of individual cognitive function in adult subjects.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2139-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The human brain exhibits a high degree of individual variability in both its structure and function, which underlies intersubject differences in cognition and behavior. It was previously shown that functional connectivity is more variable in the heteromodal association cortex but less variable in the unimodal cortices. Structural connectivity (SC) is the anatomical substrate of functional connectivity, but the spatial and temporal patterns of individual variability in SC (IVSC) remain largely unknown. In the present study, we discovered a detailed and robust chart of IVSC obtained by applying diffusion MRI and tractography techniques to 1,724 adults (770 males and 954 females) from multiple imaging datasets. Our results showed that the SC exhibited the highest and lowest variability in the limbic regions and the unimodal sensorimotor regions, respectively. With increased age, higher IVSC was observed across most brain regions. Moreover, the specific spatial distribution of IVSC is related to the cortical laminar differentiation and myelination content. Finally, we proposed a modified ridge regression model to predict individual cognition and generated idiographic brain mapping, which was significantly correlated with the spatial pattern of IVSC. Overall, our findings further contribute to the understanding of the mechanisms of individual variability in brain SC and link to the prediction of individual cognitive function in adult subjects.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles