{"title":"Quantile outcome adaptive lasso: Covariate selection for inverse probability weighting estimator of quantile treatment effects.","authors":"Takehiro Shoji, Jun Tsuchida, Hiroshi Yadohisa","doi":"10.1177/09622802241299410","DOIUrl":null,"url":null,"abstract":"<p><p>When using the propensity score method to estimate the treatment effects, it is important to select the covariates to be included in the propensity score model. The inclusion of covariates unrelated to the outcome in the propensity score model led to bias and large variance in the estimator of treatment effects. Many data-driven covariate selection methods have been proposed for selecting covariates related to outcomes. However, most of them assume an average treatment effect estimation and may not be designed to estimate quantile treatment effects (QTEs), which are the effects of treatment on the quantiles of outcome distribution. In QTE estimation, we consider two relation types with the outcome as the expected value and quantile point. To achieve this, we propose a data-driven covariate selection method for propensity score models that allows for the selection of covariates related to the expected value and quantile of the outcome for QTE estimation. Assuming the quantile regression model as an outcome regression model, covariate selection was performed using a regularization method with the partial regression coefficients of the quantile regression model as weights. The proposed method was applied to artificial data and a dataset of mothers and children born in King County, Washington, to compare the performance of existing methods and QTE estimators. As a result, the proposed method performs well in the presence of covariates related to both the expected value and quantile of the outcome.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241299410"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241299410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
When using the propensity score method to estimate the treatment effects, it is important to select the covariates to be included in the propensity score model. The inclusion of covariates unrelated to the outcome in the propensity score model led to bias and large variance in the estimator of treatment effects. Many data-driven covariate selection methods have been proposed for selecting covariates related to outcomes. However, most of them assume an average treatment effect estimation and may not be designed to estimate quantile treatment effects (QTEs), which are the effects of treatment on the quantiles of outcome distribution. In QTE estimation, we consider two relation types with the outcome as the expected value and quantile point. To achieve this, we propose a data-driven covariate selection method for propensity score models that allows for the selection of covariates related to the expected value and quantile of the outcome for QTE estimation. Assuming the quantile regression model as an outcome regression model, covariate selection was performed using a regularization method with the partial regression coefficients of the quantile regression model as weights. The proposed method was applied to artificial data and a dataset of mothers and children born in King County, Washington, to compare the performance of existing methods and QTE estimators. As a result, the proposed method performs well in the presence of covariates related to both the expected value and quantile of the outcome.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)